Поглощение Cu, Zn и Pb черноземом обыкновенным при полиметалльном загрязнении

Гапонова Ю.И.

Аспирантка

Южный Федеральный Университет, биолого-почвенный факультет, Ростов-на-Дону, Россия gju2602@yandex.ru

Введение. В городах и районах с развитыми промышленностью и транспортом происходит загрязнение почв и других компонентов экосистем сразу неким набором химических элементов. Случаи, когда происходит загрязнение почвы соединениями одного тяжелого металла, редки. Таким образом, очевидна необходимость изучения взаимного влияния ионов тяжелых металлов (ТМ) в почве.

Целью данной работы было выяснение закономерностей поглощения меди, цинка и свинца при полиметалльном внесении.

Объекты и методы исследований. В качестве объекта исследования был выбран чернозём обыкновенный среднегумусный тяжелосуглинистый на лессовидном суглинке.

В исследованиях использовали фракцию чернозема меньше 1 мм в естественной катионной форме. Для построения изотермы адсорбции тяжелых металлов почвой использовали уксуснокислые соли свинца, цинка и меди. Навески почвы заливали растворами ацетата Pb, Zn и Cu при раздельном и совместном присутствии металлов в растворе. Концентрации изменялись от 0.05 до 1.0 мМ/л. Соотношение почва: раствор составляло 1:10. Суспензии взбалтывали 1 час, затем оставляли на сутки. После этого суспензии фильтровали, в фильтратах определяли основные катионы ППК (Ca, Mg, Na и K), а также pH. Количество Pb^{2+} , Zn^{2+} и Cu^{2+} определяли методом атомной спектрофотометрии.

Обсуждение результатов. Исследование полученных результатов показало, что наиболее сильно в этой системе адсорбируется медь, слабее — свинец. Цинк поглощается существенно хуже первых двух катионов. Изотермы адсорбции Cu, Pb и Zn подчиняются классическому уравнению Лэнгмюра. Для количественной оценки поглотительной способности чернозёма обыкновенного были рассчитаны максимальная сорбционная емкость почвы C_{∞} и константа сродства K (табл. 1).

Таблица 1 Параметры изотермы $Me_{nozn.} = fC_{Me}$ при раздельном (1) и совместном (2) внесении металлов

Соли	С∞, мМ/100г		К	
	1	2	1	2
Cu (CH ₃ COO) ₂	$12,19\pm1,39$	$11,19 \pm 0,79$	170,11 ±45,41	39,21 ±22,60
Pb(CH ₃ COO) ₂	$12,31 \pm 1,96$	$5,42 \pm 1,82$	$11,21 \pm 18,46$	$23,92 \pm 4,70$
Zn (CH ₃ COO) ₂	2,26±5,99	$4,87 \pm 0,91$	$50,44 \pm 11,27$	$6,96\pm2,75$

Величины максимальной адсорбции, констант Лэнгмюра убывают в ряду: $Cu^{2+} > Pb^{2+} > Zn^{2+}$ как при раздельном, так и при совместном внесении металлов. Значения максимальных адсорбций для моно- и поликатионной адсорбции практически одинаковы, а константы в поликатионном варианте намного меньше вследствие конкуренции и вытеснения части катионов на менее выгодные позиции с меньшим сродством. Предполагается, что медь и свинец адсорбируются почвой в основном специфически с образованием прочных поверхностных соединений координационного типа и являются сильными конкурентами за адсорбционные места. Цинк поглощается в основном не специфически — за счет электростатического взаимодействия и проявляет более слабые качества конкурента в исследуемой системе.