Исследование влияния Fe_2O_3 , La_2O_3 и In_2O_3 на сенсорные свойства нанокристаллического SnO_2

Алексеенко Евгения Алексеевна

студентка

Московский Государственный Университет им. Ломоносова, Москва, Россия E-mail: velinte@ya.ru

Высокодисперсная система, образованная полупроводниковым оксидом SnO_2 и оксидами La_2O_3 , In_2O_3 , Fe_2O_3 представляет интерес для создания чувствительных элементов газовых сенсоров резистивного типа. Величина сенсорного сигнала определяется составом, микроструктурой и электрофизическими свойствами материала.

Нанокомпозиты на основе SnO_2 , содержащие $0\div 3$ мол.% La_2O_3 , In_2O_3 , Fe_2O_3 , синтезированы путём осаждения геля α -оловянной кислоты с последующей пропиткой растворами нитратов соответствующих металлов и термическим отжигом при температурах 300, 500 и 700°C.

Методом рентгеновской дифракции исследован фазовый состав и микроструктура синтезированных образцов. Во всех случаях детектируется фаза SnO₂ (касситерит). Фазы, содержащие Fe, La или In не обнаружены. Размер кристаллитов SnO₂ оценён из

уширения рефлексов в спектре рентгеновской дифракции по формуле Дебая-Шерера. С увеличением температуры отжига наблюдается рост размеров кристаллитов SnO₂. Введение второго компонента приводит к снижению скорости роста кристаллитов.

Величина удельной площади поверхности, определенная методом низкотемпературной адсорбции азота, составила $120 \div 130$ м 2 /г. Методом термопрограммируемой десорбции аммиака исследованы кислотные свойства поверхности

числа кислотных центров на поверхности Бренстедовских кислотных центров ($T_{\text{десорбции}}$ 100 ÷ 150°C).

Сенсорные свойства образцов отношению ацетону, этанолу И ацетонитрилу изучены in situ метолом измерения электропроводности в интервале температур 250 ÷ 450°С (рис.2). Сенсорный сигнал определяли из отношения величин проводимости в воздухе и в присутствии детектируемых веществ. Нанокомпозиты, отожжённые при температуре 300°C характеризуются максимальным сенсорным сигналом, что обусловлено большей величиной удельной площади поверхности.

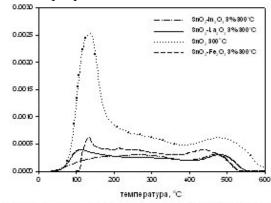
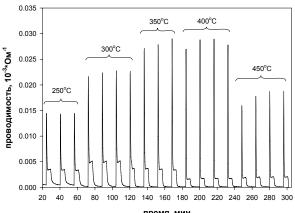



Рис. 1. Спектры термопрограммируемой десорбции аммиака

синтезированных образцов (рис.1). Введение Fe, La и In приводит к снижению общего числа кислотных центров на поверхности SnO_2 , в первую очередь, за счёт

Рис.2.Сенсорный сигнал SnO₂-La₂O₃ (3%, T_{orm} =300°C) по отношению к 35 ppm C₂H₅OH.