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ON DAMPED CLASSICAL OSCILLATIONS IN THE
MODIFIED POSCHL-TELLER POTENTIAL WELL

Alekseeva E. S.!, Rassadin A.E.?

ndependent University of Moscow, Russia; kometarella@mail.ru
2 Nizhny Novgorod Mathematical Society, Nizhny Novgorod, Russia;
brat_ras@list.ru

This report continues our investigations in the framework of research
program claimed in [1] namely we shall find here asymptotic solution of
the next Cauchy problem under 0 < § << 1:

2 sinh
F+200+ " =0, 2(0)=0, #(0)=py. (1)
cosh’ x

Let us rewrite equation (1) as quasi-Hamilton system [2]:

. OH(z,p)

; _OH(z,p)
op

p= P —20p, (2)

with Hamiltonian
Hizp) =& - — 3)
P 2 cosh’z’

Poschl and Teller were the first who considered the potential well
U(xz) = —cosh ?z for needs of quantum mechanics [3]. 30 years later
such potential in dimensional variables arose as reflectionless potential
in the theory of the Korteweg-de Vries equation (see [4| and references
therein).

Further let us do in system (2) the following symplectic change of
variables:

I(V8—1) (V2 —1)\/I(v/8—1) cosf
V2 -1 siné,  p(1,0) = 2sin?0 + (vV2 — I)? cos26

The result of substitution (4) into system (2) is equal to:

sinhx(7,0) =

- 2'52\/5—1)1(\/%—1) eI T4—— 26 sin 26 )
2 sin?60 + (v/2 — I)? cos? 2 sin?60 + (v/2 — )2 cos2

Formulae (4) are exact solution of equation (1) under § = 0, I and
6 being the action-angle variables for unperturbed finite motion |[5].
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Because of ¢ is small parameter then according to approach developed
in [2] one can apply period averaging to system (5). Thus having done
this operation instead of system (5) we obtain the following truncated
system:

[=-28I, 6=v2-1. (6)
Straightforward integration of system (6) gives:
1— —240t
Ls(t) = Ip exp(—201),  Bus(t) = V2t — I eng ). @)

In correspondence with general method suggested in [1] in order
to find asymptotic solution of system (2) or input equation (1) it is
necessary to insert formulae (7) into expressions (4):

Tas(t) = 2 (Las(t), Oas(t)), Pas(t) = p(Las(t), Ous(t)). (8)

In the report presented comparison of accuracy of asymptotic solution
(8) of system (2) with its numerical solution is carried out under different
values of ¢ and initial action variable I;. Moreover the same procedure
is performed for expressions (7) and numerical solution of system (5).
Hence if global accuracies of numerical methods for solving both system
(2) and system (5) are known then vector of total error ( |x(t) — x4s(t)],
Ip(t) — pas(t)], [1(t) — Lus(t)], |6(t) — ba5(t)| ) can be estimated too.

On the basis of above described result asymptotic solutions of the
next damped Klein-Gordon-Fock equation:

0% +258v 0% N 2 sinh v
Ot2 ot  0x2  cosh®v

=0 (9)

and the following reaction-diffusion equation:

ov  0%*v  2sinhv
7T 10
ot  0x? + cosh® v (10)

can be constructed because of equations (9) and (10) are reduced to
input ordinary differential equation (1) by means of automodelling
substitutions namely for equation (9) one ought to use substitution

vz, t) =V (%) with w > k > 0 and for equation (10) substitution

v(z,t) = V(z — ct) with small ¢ > 0 is required.
In conclusion it is necessary to note that in quantum mechanics
in the framework of method of factorization the modified Poschl-Teller

12
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Hamiltonian (3) can be presented as hierarchy of creation-annihilation
operators 6] therefore in accordance with algorithm proposed in [7] our
results may be useful under description of behaviour of quantum particle
in the modified Poschl-Teller potential well under taking into account
quantum mechanical dissipation.

The authors were supported by the Russian Foundation for Basic Research
(project no. 18-08-01356-a).
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CLASSICAL DYNAMICS ON A GRAPH AND
SEMICLASSICAL EIGENFUNCTIONS OF THE
SCHRODINGER OPERATOR THAT ARE LOCALIZED
NEAR A SUBGRAPH

Allilueva A.1.

Institute for Problems in Mechanics, Russian Academy of Sciences,
Moscow, Russia; esina_anna@list.ru

Semiclassical asymptotics of eigenvalues and eigenfunctions of
quantum operators can be associated with invariant geometrical objects
of corresponding classical Hamiltonian systems. We study semiclassical
eigenfunctions for the Schrodinger operator on a metric graph that
are localized near certain subgraph. Localization is provided by special
properties of the corresponding classical dynamics. Namely, the motion

13



Conference “Integrable Systems and Nonlinear Dynamics”

outside the subgraph must be blocked either by jumps of the potential
or by non-trivial boundary conditions in vertices.

INVESTIGATION OF FAMILIES OF SYMMETRIC
PERIODIC SOLUTIONS
OF HILL PROBLEM AND ITS GENERALIZATION

Batkhin A. B.

Keldysh Institute of Applied Mathematics of RAS, Moscow, Russia;
Moscow Institute of Physics and Technology, Dolgoprudny, Russia;
batkhin@gmail.com

We consider nonintegrable Hamiltonian system with two degrees
of freedom, namely well-known celestial mechanics Hill problem, as a
singular perturbation of an integrable one with quadratic Hamiltonian.
Hill problem describes the motion of a massless body near the minor
of two active masses and it is widely used in celestial mechanics and
cosmodynamics.

Technique of generating solutions (see |1, 2| for the case of the
restricted three-body problem) is applied for studying families of
symmetric periodic orbits. Each one-parameter family of such solution is
described in terms of a sequence of so called arc-solutions, conjugated to
each other over the certain rules by hyperbolic conics. The arc-solutions
are such solutions of the integrable unperturbed problem that start and
finish at the origin — the singular point of the perturbation function. Such
approach allows describing not only periodic orbits but any invariant
structure of the dynamical system that can be continued up to the
limiting integrable problem as well.

Using generating solution it is possible to predict such properties of
corresponding family of periodic orbits as a type of symmetry, global
multiplicity of the orbit of generated solution and first approximation
of the initial conditions and the period of the solution. An algorithm
for investigation of families of symmetric periodic solutions over its
generating sequence was proposed in [3|. This algorithm is applied to
finding families of symmetric periodic obits of Hill problem. More than
fifty new families of periodic solutions with different types of symmetry
were found out and completely investigated [4]. The symmetry of
generating solution plays an essential role for obtaining the initial

14
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condition of periodic orbit of the family. For computation of the whole
family from one periodic solution a kind of predictor-corrector method
is applied, which essentially explores the structure of the monodromy
matrix of the periodic solution and provides the monitoring of bifurcations
of the family. The obtained with numerical computations data of
symmetric periodic solutions allows to predict some properties of the
whole family of periodic orbits.

Some generalization of the original Hill problem, which includes the
singular perturbation with the opposite sign, was considered as well.
Hamiltonian function of the generalized Hill problem takes the following

form
2

H = % (45 + v3) + 22y — 119 —$%+%$2+%7
where r = /2?2 + 22 and 0 = +1. For value ¢ = —1 one gets the
Hamiltonian of the classical case of Hill problem. We call the problem
with o = +1 as anti-Hill problem. For value 0 = 0 one gets so called
integrable Hénon problem (known as ClohessysD*“Wiltshire equations)
which particular solutions are used for construction generating sequences
of families of periodic orbits of the generalized problem. The structure of
families of periodic solutions of anti-Hill problem is considerably simpler
than in the case of Hill problem and could be totally described with their
generating solutions.

Intensive numerical computations allow to state that all known
families of periodic solutions of Hill problem can be continued into the
families of periodic solutions of anti-Hill problem but not vice verse,
i. e. there are some anti-Hill problem’s families that cannot be continued
into Hill problem ones. More over, the further numerical experiment
demonstrated that all families of Hill and anti-Hill problems form the
common network connecting to each other by common generating
solutions and by sharing common orbits with integer multiplicity of
different families as well [5].

In the present work we provide an improved version of the algorithm
based on the asymptotic of the family of periodic orbits. With the help
of this algorithm, further computations of families of periodic solutions
were carried out. These computations allow us to formulate some
hypotheses about the connection between the structure of the generating
solution of the family and some properties of its periodic solutions.

The author wwas supported by the Russian Foundation for Basic Research
(project no. 18-01-00422).
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ATTRACTORS AND BIFURCATIONS IN CERTAIN
SYSTEMS

Belykh V. N.

Volga state university of water transport, Nizhny Novgorod, Russia;
Nizhny Novgorod state university, Nizhny Novgorod, Russia;
belykh@unn.ru

In this talk we present the auxiliary 2d systems method for
bifurcational analysis of multidimensional system with one nonlinearity.
This method is the main tool of rigorous proof of the homoclinic and
heteroclinic linkages in dynamical systems [1,2|. This method is
illustrated for different systems with two or three equilibrium points,
namely Phase Locked Loop system, Chua system, Anischenko-Astakhov
system, etc.

Homoclinic orbits of saddle-focus leading to emergence of chaotic
attractors are presented. An heuristic model of new attractor
corresponding to complicated limiting set similar to Ressler attractor
in a system with two equilibria is discussed.

The author was supported by the Russian Foundation for Basic Research (project
no. 18-01-00556).
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ON POLYHEDRAL GRAPHS OF BALANCED AND
UNBALANCED BIPARTITE SUBGRAPH PROBLEMS

Bondarenko V. A.!, Nikolaev A.V.2, Shovgenov D. A.?

LP.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
bond@bond.edu.yar.ru
2P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
andrei.v.nikolaev@gmail.com
3P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
djsh92@mail.ru

We consider three NP-hard problems of constructing an optimal
biclique in a bipartite graph [1].

Weighted balanced complete bipartite subgraph. Given a
complete bipartite graph G = (U, V, E), |[U| = |V| = n, a weight
function C' : E — R, and a positive integer £ < n. It is required to
find a balanced complete bipartite subgraph G, = (U, V;, E,) with the
largest sum of edge weights such that |U,| = |V,| = k.

Maximum weighted complete bipartite subgraph. Given a
complete bipartite graph G = (U, V, E), |U| = |V| = n, a weight
function C' : E — R, and a positive integer £ < 2n. It is required
to find a complete bipartite subgraph G, = (U, V,, E,) with the sum
of edge weights being as large as possible such that |U,| + |V | = k.

Minimum weighted complete bipartite subgraph. Given a
complete bipartite graph G = (U,V, E), |[U| = |[V| = n, a weight
function C' : E — R, , and a positive integer k£ < 2n. It is required
to find a complete bipartite subgraph G, = (U, V,, E,) with the sum
of edge weights being as small as possible such that |U,| + |V,| = k.

The object of the research is the construction of cone decomposition.
Let X be a finite set of points in R? We consider the problem of
maximizing a linear objective function over X:

(c,r) — max, r € X,
We denote by
K(z)={ceR": (c,z) > (cy), Vy € X}.

Since K (z) is the set of solutions of a finite system of homogeneous
linear inequalities, it is a convex polyhedral cone. The set of all cones
K () is called the cone decomposition of the space R? by the set X.
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We consider the graph of the cone decomposition with the cones
being the vertices, and two cones K(z) and K (y) are adjacent if and
only if they have a common facet:

dim(K(z)N K(y)) =d — 1.

We denote by w(X) the clique number, the number of vertices in a
maximum clique, of the graph of the cone decomposition of the space
R? by the set X. It is known [2] that the complexity of the direct type
algorithms, based on linear comparisons, of finding the maximum (or
minimum, if we change the sign of inequality in the definition of cone) of
a linear objective function over the set X, or, in other words, finding the
cone K (z) with the vector ¢, cannot be less than the value of w(X) —
1. Thus, w(X) characterizes the time complexity in a broad class of
algorithms.

Similarly, we construct the cone decompositions of the positive orthant
Ri for the problems on maximum and minimum:

K$ax(x) ={ce Rfl&- (e, x) > (ey), Yy € X},
Kt () ={ceRL: (c,x) < (c,y), Vy € X}.

This construction, in turn, is dual to the polyhedron of the problem
that is defined as the dominant of the convex hull of the set X and is
used in the analysis of problems with nonnegative input data [3,4,5]. In
our case it is the nonnegative weights of edges.

Theorem 1. The clique number of the graph of the cone
decomposition K, j, for the weighted balanced complete bipartite subgraph
problem is superpolynomial in n and k:

= ()0 ((2))

Theorem 2. The clique number of the graph of the cone
decomposition K'W* for the maximum weighted complete bipartite
subgraph problem is superpolynomial in n and k:

= (7) =o((2)). e
W(KT) > (":) :Q<<n;1)) ifk = 2s+1.
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Theorem 3. Let

n| 9
k=3s,m= {§J,1m<k<3m,

then the clique number of the graph of the cone decomposition Kg‘,@” for
the minimum weighted complete bipartite subgraph problem is

superpolynomial in n and k:

e (2) =03

For three considered problems of the balanced subgraphs with
arbitrary edges and unbalanced subgraphs of minimum and maximum
weight with nonnegative edges we establish the superpolynomial clique
numbers of the graphs of the cone decompositions. In all three cases, the
polyhedral characteristics correlate with the complexity of the problems.

The work is partially supported by the grant of the President of the Russian
Federation MK-2620.2018.1.
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We consider a problem of integer recognition (IR): for a given linear
objective function f(x) and a polytope P determine whether
max{ f(z) | © € P} is achieved at an integral vertex of P. In a certain
sense, IR occupies an intermediate place between the classical problems
of linear programming (LP) and integer linear programming (ILP).

The IR problem was considered (apparently for the first time) in [1],
where, in particular, it was proved that it is polynomially solvable for
the class of the rooted semimetric polytopes RM ET(n). The rooted
semimetric polytopes are one of the simplest LP relaxations of the
Boolean quadratic programming and maximum cut problems. Thus, ILP
over RM ET(n) is NP-hard [2].

On the other hand, there are classes of polytopes for which IR
is NP-hard. In particular, the metric polytope M ET(n), defined by
triangle inequality constraints [3], and the 3-SAT relaxation polytopes
SATLY [1]. Moreover, IR turns out to be NP-hard over polytopes,
obtained by complementing the constraints of RM ET (n) by a single
linear inequality [4]. Polynomially solvable subproblems of IR over
SAT#Z are considered in [5]. Based on them, there was developed a
polynomial time algorithm for some special cases of edge-constrained
bipartite graph coloring problem [5].

The obtained results can be generalized in the form of the following
statement: a sufficient condition for the polynomial solvability of the IR
problem.

Theorem 1. Let P be a polytope in R", defined by the system of
linear constraints Ax = 1, x > 1, where A is a Boolean matrix. Let the
polytope () be embedded in P and defined by a system of integer linear
constraints whose number is polynomial in n. Let the integral vertices
of P and () coincide. Finally, we suppose that for any point u of () there
exists an integral vertex z that is majorized by u (for some a > 0 we
have az < w). Then IR over P is polynomially solvable.
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The assumption that A is a Boolean matrix is not burdensome —
for a large number of the most known problems it is satisfied. A key
condition of the theorem is the majorization of integral vertices. It holds
for RMET(n) (= P) and MET(n) (= @), and IR is polynomially
solvable over rooted semimetric polytopes [1].

The work is partially supported by the grant of the President of the Russian
Federation MK-2620.2018.1.
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NEW INTEGRABLE SYSTEMS OF NONHOLONOMIC
DYNAMICS
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Equations of motion are obtained for the problem of a homogeneous
ball rolling without slipping on a rotating surface. Integrals of motion
and an invariant measure are found. A detailed linear stability analysis
of the ball’s rotations at the saddle point of a hyperbolic paraboloid is
presented. A three-dimensional Poincare map generated by the phase
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flow of the problem is numerically investigated and the existence of a
region of bounded trajectories in a neighborhood of the saddle point of
the paraboloid is demonstrated. It is shown that a similar problem of a
ball rolling on a rotating paraboloid, considered within the framework
of the rubber model [2], can be reduced to a Hamiltonian system which
includes the Brower problem [1] as a particular case.
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We construct Lie algebras of vector fields on universal bundles U,
of symmetric squares of nondegenerate hyperelliptic curves of genus
g =1,2,... For each of these Lie algebras, the Lie subalgebra of vertical
fields has two commuting generators. The Lie algebra of projectable
fields is isomorphic to the polynomial Lie algebra of vector fields, that are
tangent to the discriminant variety of the universal hyperelliptic curve of
genus g. We show that the generators of the Lie subalgebra of projectable
fields determine the representation of the Lie subalgebra of the Witt
algebra. We explicitly construct a birational isomorphism C?9+? — U,.
As an application, we obtain integrable Hamiltonian polynomial
dynamical systems with polynomial Hamiltonians on C* and R*. In
cases g = 1,2,3 we explicitly describe the solutions of these systems
and discuss their properties.
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TOPOLOGICAL RECURSION FOR
BOUSQUET-MELOU-SHAEFFER NUMBERS
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Topological recursion is a recurent procedure that is used to find
elements of generating series; generating series coming from enumerative
geometry in particular. I will talk about first example of so-called global
topological recursion: a recursion for Bousquet-Melou—Shaeffer numbers
which counts ramified coverings of the sphere with fixed quantity of
ramification points and fixed overal degeneracy.

ASYMPTOTICALLY LYAPUNOV-STABLE SOLUTIONS
WITH BOUNDARY AND INTERNAL LAYERS IN THE
STATIONARY REACTION-DIFFUSION-ADVECTION
PROBLEMS WITH A SMALL TRANSFER

Davydova M. A.!, Nefedov N.N.2, Zakharova S. A.?

' Moscow State University, Moscow, Russia;
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2Moscow State University, Moscow, Russia; nefedov@phys.msu.ru
3 Moscow State University, Moscow, Russia;
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The stationary distribution of the gas impurity concentration u(x) in
the dimensionless variables is described by the problem for the stationary
equation of the reaction-diffusion-advection type:

V(k(z)Vu) — V(uA) + f(u,) =0, z€ D C R,
—k(z)(Vu,n) = G(x), x€S8,

23



Conference “Integrable Systems and Nonlinear Dynamics”

where A (z) is a velocity of transfer, f(u, x) is a volume density of sources
(or sinks) of matter, G(x) is a flow of matter at the boundary S, n is
a unit external normal to the S at the point x. The turbulent diffusion
coefficient k(z) is a small function.

In the approximation of an incompressible medium, under the certain
physical state of the atmospheric surface layer, the concentration
distribution of the gas impurity in the atmospheric surface layer is
described by the stationary problem:

e2Au —e(A(x),Vu) — B(u,z) =0, z=(z1,72) € D C R?,
Oul _ S (1)
onls=9(@), z€S,

where ¢ > 0 is a small parameter, the components of the vector A(x) =
{Ai(x), As(x)}, the functions B(u,x), g(z) and the boundary S are
assumed to be sufficiently smooth. We negelect the dependence of the
coefficient k(z) on the vertical variable.

The problem (1), modeling the processes of the transport, decay
and chemical transformation of the active and passive impurities in the
surface layer of the atmospher, is investigated by use of the methods
of asymptotic analysis [1-4], developing the classical methods [5] for
the case of the stationary multidimensional reaction-diffusion-advection
problems.

We study the asymptotically Lyapunov-stable solutions of problem
(1) of the boundary layer type and the contrast structures by constructing
the formal asymptotic approximations of an arbitrary-order accuracy
based on the boundary-function method. To justify the constructed
asymptotics, we use an asymptotic method of differential inequalities.
The results of the study are illustrated by the example of the two-
dimensional boundary value problem with a cubic nonlinearity. They can
be used to create a numerical algorithm that uses asymptotic analysis to
construct spatially inhomogeneous mashes when describing the internal
layer of contrast structure, and also for the purposes of constructing the
test examples.

The authors were supported by the Russian Foundation for Basic Research
(project no. 16-01-00437).
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DELONE SETS AND CRYSTALLINE STRUCTURE
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In this talk, we discuss a problem posed in the Delone group at
the Steklov Mathematical Institute in the 1970s. The problem is about
genesis of the global order in the atomic structure of crystals. A very
high symmetry of the atomic structure of crystalline materials appears
from amorphous state of melt, solution, or gas during crystallization.
One of the core problems of the local theory for regular systems was —
and still is— to explain the genesis of symmetry of a crystalline structure
through congruence of its relatively small by size fragments/clusters.

An ideal crystal is defined (after E. Fedorov) as a Delone set X that
is a union of several Sym(X)-orbits, where Sym(X) is the orthogonal
group of symmetries of X. Each individual orbit Sym(X) -z, z € R?, is
a Delone set on that the group Sym(X) acts point-transitively. Such a
point set with a transitive group is called a reqular system.

For a given x € X and p > 0 a subset of all points ' € X with
|za’| < piscalled a p-cluster C,(p) of the point z. Given z and y € X, p-
clusters Cy(p) and Cy(p) are said to be equivalent if there is an isometry
g such that g(z) = 2’ and g(C,(p)) = C.(p). For given p the number
of all classes of p-clusters in X is supposed to be finite and denoted
by N(p). It is obvious that the value N(p) does not decrease as the p
increases.

[t is easy to see that X is a regular system if for all p > 0 N(p) = 1.
Assume now that for X and for some pg the function . Is it sufficient for
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X to be a regular system? From the local theory it follows that there
is such a py that from the assumption N(py) = 1 it follows that X is
regular.

For given dimension d the reqularity radius pq is defined by the two
conditions: (1) N(pq) = 1 implies regularity of the X C R? and (2) for
Ve > 0 there is a non-regular Delone set X with N(pg —¢) = 1.

As proved recently, p; > d2R, where R is the parameter of a Delone
set X C RY (a radius of the biggest 'empty’ ball, i.e. a ball containing
no points from X).

In the talk we will discuss the case d = 3 and show that 6R <
p3 < 10R. In fact, the upper bound for ps is based on the symmetry
group S;(2R) of the 2R-cluster C,(2R) in X. We emphasize that finite
subgroups of O(3), that can be realized as a group S;(2R) of the 2R-
cluster in X with condition N(2R) = 1, constitute a finite list L. It is
particularly interesting that for many groups from the list L, it turns
out that in order to provide regularity of a Delone set, it is sufficient to
require condition N(2R) = 1 which is about the minimal condition.
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Artificial genetic oscillators are very interesting because they are
simple models of key biological processes such as the cell cycle and
circadian rhythms. The simplest genetic oscillator, proposed in [1] and
called a repressilator, consists of three elements. Each element
unidirectionally inhibits a neighboring element. The mathematical model
of this gene network has the form

iy =—mj+a/(1+u] )" +ag, 45 = B(m; —uy),

j:172737 Ug = us.

(1)

We assume that each oscillator element is a set of mRNA (matrix
ribonucleic acid) of concentration m; and protein of concentration u;.
We further assume that the temporal variation of m; is characterized
by processes of synthesis and degradation. The first process is described
by the function a/(1 + u}il), where u;_1 is the concentration of the
repressor protein for the jth mRNA, v = const > 0 is the cooperativity
coefficient, and o = const > 0 is the transcription rate in the absence
of the repressor. The second process is described by the term —m,;. And
finally, the constant oy > 0 is responsible for the promoter leakage. The
protein dynamics is represented by linear processes of synthesis (the
term [m; in the system (1)) and degradation (the term —fu;). Here,
£ = const > 0 is the ratio of the protein degradation rate to the mRNA
degradation rate.

As a rule, model (1) is studied under the assumption that g and
ap are small. In this situation, changing the variables ¢t — ¢ and
omitting the additional term «y, we obtain a singularly perturbed system
and then apply the well-known Tikhonov reduction principle to it. The
problem of self-oscillations of similar systems arising in modeling gene
networks has been studied by many authors (see, e.g., |2]-7]).
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The character of the interaction between the concentrations u; and
m; described above is quite similar to the interaction between six
ecological populations comprising three predators and three prey. Indeed,
we assume that u; and m;, 7 = 1,2,3, are the respective densities
of the population sizes of the predators and their prey. By (1), each
predator u; then feeds only on one prey m; (for m; = 0, the magnitude
u; decays according to an exponential law) and simultaneously exerts
pressure on only the prey m;, 1. The latter is manifested by the rate of
increase in m;y; decreasing as u; increases. Moreover, in the absence
of any predator/repressor (u;_; = 0), m; tends to the threshold value
m; = a + oy as t — +o0o. The above ecological interpretation allows
using the Yu.S. Kolesov approach to mathematically model the gene
network that interests us. This approach leads to the system

mj = 7’1(1 + CL)_l [1+a(1—uj_1)—mj]mj+oz, ﬂj = Tg[mj—Uj]Uj, (2)

7 =1,2,3, where uy = ug and all constants ry, r9, a, and « are positive.
If we take the number of oscillators equals to n, thenin (2) j =1,...,n
and ug = u,. We note that we purposefully add the last term +«, which
is similar to the last term oy in (1), in the equation for m; and thus break
its Volterra structure. Like system (1), the new mathematical model (2)
of a repressilator admits a certain simplification. First, we assume that
ro > 1, and ry = r ~ 1. According to the Tikhonov reduction principle,
we then have m; = u;, j = 1,,...,n as 1o — +00 and obtain the
system for u;,

U; =r(l+a)! 14+a(l—uj_1) —ujluj+a, j=1,...,n, uy=uy,.

(3)
By traveling waves of system (3), we mean special periodic solutions (see
[8,9]) that can be represented in the form

uj=ult+(j—1)A4), j=12,....,n, A=const>0. (4)

Below, the existence and stability of such solutions are analyzed in the
case where r > 1, a < 1 and the parameter a is on the order of unity.
More precisely, we assume throughout that

a=const >1, a=rexp(=br), r>1, b=const >0. (5

We proof that, under conditions (5), the number of coexisting periodic
solutions (4) to system (3) increases indefinitely as r — +o0 and n —
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+00 consistently. However, all of them (except for a single stable solution
for odd n) are quasi-stable. Namely, the stability spectrum of each of
these periodic solutions contains a nonempty group of multipliers v € C,
v # 1 lying at a distance of order exp(—cr), ¢ = const > 0 from the unit
circle.

This work was performed under the State assignment, project no. 1.10160.2017/5.1.
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We develop algebraic and geometric methods in the theory of partial
differential equations (PDEs). Recall that a distribution on a manifold
is a subbundle of the tangent bundle of the manifold. It is known that,
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using jet bundles, one can regard PDEs as geometric objects. Namely,
a PDE can be regarded as a manifold with a distribution (the Cartan
distribution) such that solutions of the PDE correspond to certain
integral submanifolds of the distribution. This approach is applicable
to PDEs satisfying some non-degeneracy conditions, which are almost
always satisfied in practice.

Recall that fundamental groups are an important invariant for
topological spaces. Using the above-mentioned geometric approach to
PDEs, we introduce an analog of fundamental groups for PDEs. However,
the “fundamental group of a PDE” is not a group, but a certain system
of Lie algebras, which we call fundamental Lie algebras. So, for any
given PDE satisfying the above-mentioned non-degeneracy conditions,
we define a family of Lie algebras, which we call the fundamental Lie
algebras of this PDE. The main idea of the definition is presented below.

Fundamental Lie algebras are new geometric invariants for PDEs and
are closely related to integrability properties of PDEs, where integrability
is understood in the sense of soliton theory.

The construction of the fundamental Lie algebras for a given PDE
is coordinate-independent and is functorial. It gives a functor from the
category of PDEs (with a marked point) to the category of Lie algebras.

Before describing this construction for arbitrary PDEs, we would
like to outline some applications in the case of (1+41)-dimensional PDEs.
Using fundamental Lie algebras, we obtain necessary conditions for
integrability and necessary conditions for existence of Bécklund
transformations for (1+1)-dimensional evolution PDEs. For such PDEs,
representations of fundamental Lie algebras classify all Lax
representations (zero-curvature representations) up to local gauge
equivalence.

In the structure of fundamental Lie algebras for integrable (1+1)-
dimensional PDEs, one finds infinite-dimensional subalgebras of Kac-
Moody algebras and infinite-dimensional Lie algebras of certain matrix-
valued functions on some algebraic curves. Considered examples include
the Korteweg-de Vries (KdV), Krichever-Novikov, Kaup-Kupershmidt,
Sawada-Kotera, nonlinear Schrodinger, Landau-Lifshitz equations.

In a joint work with G. Manno [1| we show that fundamental Lie
algebras help to obtain necessary conditions for existence of a Backlund
transformation (BT) between two given (1+1)-dimensional evolution
PDEs. This allows us to prove a number of non-existence results for
BTs. For instance, a result of this kind is presented in Theorem 1 below,
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which is proved in [1].

To describe the main idea of the definition of fundamental Lie algebras
for arbitrary PDEs (satisfying the above-mentioned non-degeneracy
conditions), we need to recall some notions from topology and category
theory.

Let M be a finite-dimensional manifold and C(M) be the category
of topological coverings over M. Let b € M. Consider the fiber functor
F, from C(M) to the category of sets. The functor Fj takes a covering
7: M — M to the fiber 7(b).

An automorphism of a functor F' is a natural transformation from
F to F such that this transformation is an isomorphism.

Recall that the fundamental group m (M,b) acts naturally on the
fiber 771(b) of every covering 7: M — M. It is known that this gives
an isomorphism between 71(M,b) and the group of automorphisms of
the fiber functor Fj,.

One can make a somewhat similar construction for PDEs as follows.
As said above, a PDE can be regarded as a manifold £ with a distribution
(the Cartan distribution). There is a notion of coverings of PDEs (3, 6].
Fibers of coverings of PDEs are smooth manifolds. We consider only
coverings with finite-dimensional fibers. For each a € £, this allows us
to speak about infinitesimal automorphisms of the corresponding fiber
functor Fj,, which are defined in terms of vector fields on fibers over a.

Then the fundamental Lie algebra of a PDE &£ at a point a € &£
can be defined as the Lie algebra of infinitesimal automorphisms of the
corresponding fiber functor Fj,. More precisely, one needs to work on
the formal level, where smooth functions are replaced by formal power
series. Details of this theory will appear in [2].

For (1+1)-dimensional PDEs, fundamental Lie algebras can be
described in terms of generators and relations, using a generalization of
the  Wahlquist-Estabrook  prolongation method and gauge

transformations.
For any constants eq,es,e3 € C, consider the Krichever-Novikov

equation
3u,  (u—e1)(u—e)(u—e3)

KN - = Ugxx — —=
(61762763) {ut [ 2 U, + U,

Cumutno)
and the algebraic curve
C(ey, eg,€3) = {(z,y) c C? ‘ Y = (z—e)(z —eg)(z — 63)}.

If e; # e; for all i # j then the curve C(eq, ez, e3) is elliptic.
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Consider also the KAV equation u; = gy + ut,, u = u(x,t).

Theorem 1. Let ey, ez, €3, €], €5, 5 € C such that e; # e; and e #
e} for all i # j. If the curve C(ey, ez, e3) is not birationally equivalent to
the curve C(e}, €5, €5), then the equation KN(eq, ez, e3) is not connected
with the equation KN(e}, €}, €4) by any Béacklund transformation (BT).

Also, if e1 # e9 # e3 # e1, then KN(ey, e9, e3) is not connected with
the KdV equation by any B'T.

BTs of Miura type (differential substitutions) for the Krichever-
Novikov equation KN(ey, €2, e3) were studied in [4, 5]. According to [4, 5],
the equation KN(ey, eg, €3) is connected with the KdV equation by a BT
of Miura type iff e; = e; for some i # j.

Theorem 1 considers the most general class of BTs, which is much
larger than the class of BTs of Miura type studied in [4, 5].

If e1 # ey # e3 # ey and €] # e}, # e # €], the curves C(ey, ey, €3)
and C(e], €, €}) are elliptic. The theory of elliptic curves allows one to
determine when C(ey, €2, €3) is not birationally equivalent to C(e], €}, €4).
One gets a certain algebraic condition on the numbers ey, €9, e3, €], €5,
e5, which allows us to formulate the result of Theorem 1 more explicitly.
See [1] for details.

The author would like to thank A.P. Fordy, A. Henriques, I.S. Krasilshchik,
J. van de Leur, Yu.l. Manin, A.V. Mikhailov, 1. Miklaszewski, V.V. Sokolov,
A.M. Verbovetsky, and A.M. Vinogradov for useful discussions. This work was
carried out within the framework of the State Programme of the Ministry of
Education and Science of the Russian Federation, project no. 1.12873.2018/12.1.
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TOPOLOGIAL BILLIARDS BOUNDED WITH ARCS OF
CONFOCAL QUADRICS ON MINKOWSKI PLANE IN
TERMS OF FOMENKO-ZIESCHANG INVARIANTS

Karginova E. E.

Lomonosov Moscow State University, Moscow, Russia;
karginov13@gmail.com

Minkowski plane is R? with scalar product (z,y) = x1y; — Z29s.
The family of confocal quadrics on the Minkowski plane is given by

$2 yQ
aoaTpaa b AR M)

Here a > b > 0 are real numbers.

The billiard in ellipse on Minkowski plane was investigated by
V. Dragovich and M. Radnovich in [2|. They described the topological
type of Liouville foliation of this system with the Fomenko-Zieschang
method. This method involves obtaining a graph with numeric marks
- an invariant of integrable system, which completely determines the
topological type of its Liouville foliation. This approach is expanded in
[1].

Let us define a simple billiard as a compact, connected subset of a
plane which boundary consists of arcs of confocal quadrics of the family
(1) and does not contain angles greater than 7.

V. V. Fokicheva in [3] proposed and investigated the construction
of topological billiard - a 2-dimensional, connected, orientable manifold,
obtained as a result of isometric gluing of several simple billiards (sheets)
along some convex or straight arcs of the boundary lying on the same
quadric.

Let us define the billiard reflection in simple billiard as follows. When
the material point hits the boundary arc, it reflects according to the next
rule:

e (v1,v9) are coordinates of a vector before the reflection and (wy, wo)
are coordinates of the vector after the reflection;

o (v1,v9) € Iy, (w1, ws) € ly, and line [y is billiard reflection of line
la;
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o v 4+ v3 = w? + w3.

The reflection in topological billiard is defined in the same way for
common boundary arcs. If the mass point on one of the sheets of the
billiard hits the gluing edge, it reflects and continues motion along the
second sheet.

Above-described reflection preserves two integrals: the caustic
parameter A and the vector of Euclidean velocity vg. It turns out that
this motion is integrable.

Fixing v we obtain an isoenergy surface Q% - 3-dimensional manifold
in 4-dimensional phase space. Changing the value of A, we shall obtain
the foliation of Q3. The proof of the fact, that common layers in this
foliation are tori, is obtainable by geometric methods.

Figure 1 shows various Fomenko-Zieschang invariants for different
topological billiards.

> >
\Vak
I\)Om_‘
SN T
l ™

Fig. 1. Fomenko-Zieschang invariants for different topological billiards, obtained as
a result of gluing two similar exemplars of simple billiards: billiards in left column
and corresponding invariants in right column
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NORMALISATION OF THE PARABOLIC EQUATION
WITH SMALL DIFFUSION AND STRONG
NONLINEARITY

Kashchenko 1. S.

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
iliyask@uniyar.ac.ru

Consider a system of nonlinear equations of parabolic type

du &%u du
a:gD@+(Ao+/~eAl)WrF<ua%)> (1)
u(t,z + 27) = u(t, v). (2)

Here u € R”, all the eigenvalues of the matrix D have positive real parts,
the nonlinear vector-valued function F'(u,v) is linear in each argument,
and € and p are small positive parameters: 0 < e, u < 1.

Let us consider the problem of investigating the local (in the
neighborhood of the zero equilibrium state) the dynamics of the boundary
value problem (1), (2), ie, the behavior as t — oo of all solutions (1), (2)
with initial conditions from a neighborhood of zero that is sufficiently
small (but does not depend on small parameters).

In the case when the nonlinearity depends only on u (does not depend
on 24), the corresponding results are given in [1].

An important role in the problems of local analysis is played by the
location of the eigenvalues of the family of matrices A(z) = Ag—zD that
depend on the parameter z € [0, 00). In the case when for all considered
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z all eigenvalues of A(z) have negative real parts, all solutions from
some fixed neighborhood of zero tend to zero as t — oo. If there is
a zp > 0 such that the matrix A(zp) has an eigenvalue with positive
real part, then the posed problem becomes nonlocal. Here we will study
the question of local dynamics (1), (2) in the case when A(z) has no
eigenvalues in the right complex half-plane for all z € [0, 00), and there
is a 29 > 0 such that A(zy) has an eigenvalue with zero real part. We
note at once that in this case the characteristic equation

det(Ag+ pAy —ek?D — X)) =0 (k€ 7Z),

has infinitely many roots whose real parts lie in some neighborhood of
zero, whose length tends to zero as €, u — 0. So, we can say that the
this critical case has infinite dimension.

[t will be shown that the local dynamics (1), (2) strongly depends on
the relations between the small parameters € and w. In this connection,
it is convenient to assume that for some constants ¢ > 0 and « € (0, 1]
we have

= ce”.

Note that the results differ fundamentally from those given in [1],

For example, in the case when the family of matrices A(z) has a pair

of purely imaginary eigenvalues, the local dynamics (1), (2) can be
described by the following quasinormal form [2]

; 2
% %%4—0(141& b)E + 3 | o1& % ’€|2 . + 52_£+ g(aj) ] ’
(3)
§(ry+2m) =¢(7,y). )

Theorem Let for some s problem (3), (4) has periodic by T solution
&(7,y). Then boundary problem (1), (2) has a solution u(t,x,¢)
asymptotic with respect to the discrepancy up to O(e (1+a)/ 2) uniformly
with respect tot > 0, x € [0, 2x], for which

ult,x,€) = e2[€(e%t, (32T + 0)x) exp (iwt)a+

+&o (%, (37 —|—9) ) exp (—iwt)al.

The authors were supported by the Russian Foundation for Basic Research
(project no. 18-01-00672).
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FROM THE CHARACTER TABLE OF A GROUP TO
THE STRUCTURE OF A GROUP

Kazarin L. S.

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
1sk46@mail.ru

Let G = {g91,92,...,9,} be a finite group of order n. Let
{x1,x2,- .-, Xx&} be its irreducible ordinary characters and 7" = (x;(g;))
be its character table of G. In this talk we discuss which properties
of G can be retrieved from the table 7. Clearly, we may determine
immediately the class number k of G and its order n = S°F  y;(1)%,
provided g; is the unite element of G. After the determining the canonical
decomposition of n = p{'p5*...p%, where p;(1 < i < s) are all prime
divisors of n and «; — natural numbers, we have determined the order
|G|, of a Sylow p-subgroups of G for every prime p dividing n = |G|. Also
we may introduce the prime graph I'(G), known also as a Gruenberg-
Kegel graph, with vertices V(G) = {p1, po, ..., ps} and edges (pi,p;) €
E(G). We say that the vertices p; and p; are adjacent if G has an element
x whose order is divisible by p;p;.

The main problem here is the distribution of the representatives of
the conjugacy classes of G by their orders. For each element x € G it is
known the how to compute the order of its centralizer Cg(x). For this
we use the orthogonality relation: |Cg(z)| = Zle Ix(2)]?.

Usually this gives not big choice for the possibilities for the order of
x. In fact, often it is interesting to determine for every prime p dividing
|G| the sets X, of elements whose orders are coprime to p and the set
of p-elements. One of the possibilities is as follows. Starting from an
arbitrary element ¢ € G we will decide, wether g is a p-element, XJ,-
element, or a mixed (i.e. a nontrivial product of an element in ¥, and a
p-element. It is well-known that the value of the character xy on g € G
of order m is the sum of the m-th roots of unity. If m = p“, where
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(p,t) = 1, then x(g)”" = x(¢*") (mod p) for some maximal ideal in
the ring of all algebraic integers, containing a prime p. It follows that
if ¢ is a p-element, then x(g)/%" = x(1) (mod p) for every irreducible
character y of GG. This gives the possibility to separate p-elements from
others. Using this process several times, we found at the end for every
p dividing |G| the set of p-elements and the set ¥, of elements whose
orders are coprime with p (p-regular elements).

Now there is a possibility to reconstruct the prime graph I'(G). For
every p-element x of G' we compute the order |Cg(z)| and find all prime
numbers 7(Cg(z)) dividing |Cg(x)|. The union of these primes gives us
the adjacent vertices for the prime p. At the end we have a complete
information concerning the prime graph I'(G).

Another important information can be used from the set w(G) of
the orders of elements in the group G. The activity in this field during
last 40 years gives a lot of results that gives a possibility to recognize a
finite simple group G by this characteristic.

Clearly, it is possible to recognize that the group with the character
table T is simple. This is determined by the property that there exists
only one nontrivial normal subgroup G’ = G. In general, the character
x determined its kernel K = {g € G|x(g) = x(1)}. Thus for the simple
nonabelian group there is just one such character, the principal character
of G. The number of characters of degree 1 is the index of a commutator
subgroup G’ of G.

Assume that N is a normal subgroup of G, which corresponds to
an irreducible character y. This character has a kernel N consisting of
all elements g € G such that x(g) = x(1). In fact, we have only the
representatives of the conjugacy classes of GG, that are contained in V.
Since we know the sizes of these classes (|G : Cs(g;)|), we can compute
|N| and, therefore, the order of the group G/N. Afterwards, this gives
the possibility to construct the character table of G/N and repeat the
steps to understand the structure of the corresponding factor-group.

Of course, there are many further important properties and
characteristic of a group, that can be retrieved from its character table T'.
First of all, the structure constants a;; that determined the products
of the class sums C; and C} of all elements conjugate with g; and g;
respectively. Also, the tensor product of the representations affording the
irreducible characters x; and x; leads to the other structural constants
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c;; such that

k

XiXi = Y Chixe-
r=1
The case, when the constants ¢; for the group G (whose all elements are
real) belongs to the set {0, 1} was described first by E.P.Wigner in 1940
and the corresponding group was called an SR-group. It was proved by
the author and his students that the finite SR-group is soluble.

Recently some authors has found the information concerning the
existence of a nilpotent Hall subgroup of a finite group.

REMARK. It should be noted that non-isomorphic groups may have
the same character tables: the classical examples - groups quaternion
and the dihedral group of order 8.

The aim of the authors is to describe some other results that gives the
usage of the character table of a group for understanding the structure
of a finite group.

The author is supported by the Project VIP - 008 of Yaroslavl P.Demidov State
University.
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REALIZATION OF 3-ATOMS BY INTEGRABLE
BILLIARD’S BOOKS

Kharcheva 1. S.

Lomonosov Moscow State University, Moscow, Russia;
irina.harcheval@yandex.ru

Let us consider a standard billiard problem in some fixed domain. A
particle moves in a straight line within the domain. When the particle
hits the boundary it reflects from it without velocity loss. This dynamic
system contains the first integral - the scalar square of the velocity
vector. In some special cases such a system has another integral.
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One of these cases is a billiard in the domain bounded by confocal
quadrics. The second special integral can be described by the following
feature of trajectories: the straight lines containing the segments of the
polygonal billiard trajectory are tangents to a certain quadric (ellipse or
hyperbola).

This dynamical system has 4-dimensional phase space and two
integrals. One of them is a Hamiltonian. Integrable Hamiltonian systems
with 2 degrees of freedom have Fomenko-Zieschang invariants [1]|. Such
invariants allow us to speak about the equivalence between closures of
trajectories — Liouville equivalence. Up to Liouville equivalence, such
systems have been studied in details in [2] by V. Dragovich, M. Radnovich,
and in [3, 4] by V.V. Fokicheva.

A billiard’s book is a generalization of these billiards. Such type of
billiards formed by gluing a few classical billiard domains along pieces
of their boundaries. The special case where we glue two domains called
a topological billiard and was researched by V.V. Fokicheva [5].

Researching billiard’s books we try model famous integrable systems
in terms of Fomenko-Zieschang invariants. The Fomenko conjecture about
modeling Fomenko-Zieschang invariants using billiard’s books and new
results that confirm the part of the conjecture will be presented.

The author was supported by the Russian Foundation for Basic Research (grant
No. 16-01-00378-a) and the program “Leading Scientific Schools” (grant no. NSh-
6399.2018.1).
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TOPOLOGY OF THREE DIMENSIONAL INVARIANT
MANIFOLDS AND KOVALEVSKAYA INTEGRABLE
CASE

Kibkalo V. A.

Lomonosov Moscow State University, Moscow, Russia;
slava.kibkalo@gmail.com

[.V. Komarov in his paper [1] showed that the Kovalevskaya integrable
case in rigid body dynamics can be included in a one parameter family of
integrable Hamiltonian systems on the pencil of Lie algebras so(3,1) —
e(3) — so(4) with real parameter &2 € R. The Kovalevskaya top was
realized as a system on e(3) for && = 0. The following bracket on RS
depends on ze:

{Ji, Ji} =i dr, {Ji,xj} = cijprr, {xi,x;} =eeejpdy, (1)

where €, is the sign of permutation {123} — {ijk}, ¢ € R. When & >
0,2 = 0, & < 0 this bracket coincides with the Lie—Poisson brackets for
the Lie algebras so(4),e(3),s0(3,1) respectively. These brackets have
common Casimir functions

The Hamiltonian and an additional integral of these systems are equal
to
H = J; + J3 + 2J3 + 2c121, (3)

K = (J12 - J22 — 201.171 + %C%)z + (2J1J2 — 261372)2. (4)

We consider three-dimensional submanifolds which are common level
surfaces of first integrals of the system. Topology type of them (class of
diffeomorphic manifolds) can be determined by several ways. One of
them is analysis of Fomenko-Zieschang invariants. They were calculated
in [2| for the classical Kovalevskaya case and by speaker for the case of
the Lie algebra so(4).

This work was supported by the Russian Science Foundation grant (project
No.17-11-01303).
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BIFURCATIONS OF SPATIALLY INHOMOGENEOUS
AND PERIODIC SOLUTIONS FOR NONLOCAL
EROSION EQUATION

Kovaleva A. M.

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
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We consider a periodic boundary-value problem for a nonlinear
equation with the deviating spatial argument. This equation is called a
spatially nonlocal erosion equation. It describes the formation of
undulating surface relief under the influence of ion bombardment and
can be interpreted as a development of the well-known Bradley-Harper
model, which is based on Sigmund’s theory of sputtering [1].

Consider the equation

Up = AUy —CWeA+b(U—w) by (u—w)wy+bo(w,)*+b3(u—w) (w, ) +byw?,

where u = wu(t,z) describe the height of a substrate surface at
time ¢, depending on a one-dimensional space variable x, w = u(t,z —
h),h € R,h > 0. The coefficients of equation depend on parameters
of the problem, such as the angle of incidence of the ion beam on the
unperturbed substrate surface and the substrate material.

We will consider the nonlocal erosion equation with conditions

u(t,x + 27) = u(t,z), w(0,z) = f(z), f(z) € H.

This problem was studied in case when 0 < h < 1.

In order to solve the occurring bifurcation problems there were used
the investigation methods of dynamical systems with an infinite-
dimensional phase space (a space of initial conditions) such as: the
method of integral manifolds, the method of Poincare-Dulac normal
forms and asymptotic methods of analysis. In particular, asymptotic
formulas were obtained for solutions which describe nonhomogeneous
undulating surface relief. The question about the stability of these
solutions was studied. And the analysis of normal form was given [2].

It is shown that the nonhomogeneous surface relief can occur when
the stability of the homogeneous states of equilibrium changes. In this
boundary value problem the loss of stability can occur at the higher
modes and a number of such modes. In the case when the deviation h
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is small enough, then surface relief with small wavelength can appear.
This relief can actually be interpreted as nanorelief. The latter is quite
important for applications in modern nanoelectronics.

REFERENCES

1. Sigmund P., “Theory of sputtering. I. Sputtering yield of amorphous and
polycrystalline targets®, Physical Review, 184, No. 2, 383-416 (1969).

2. Kovaleva A.M., Kulikov A.N., Kulikov D.A., “Stability and bifurcations of
undulate solutions for one functional-differential equation®, Izv. IMI UdGU,
2, No. 46, 60-68 (2015) (In Russ.).

INTEGRABLE SYSTEMS AND LOW-DIMENSIONAL
AFFINE MANIFOLDS

Kozlov I. K.
MSU, Moscow, Russia; ikoz1lov90@gmail . com

It is well-known, since at least the paper of J. J. Duistermaat [1], that
integrable Hamiltonian systems define a structure of an affine manifold
on the base of the fibration in a neighbourhough of a regular point. More
precisely, these structures are of the so-called integral affine manifolds,
i.e. for a proper atlas all the transition maps are affine maps x — Ax+0b
with an integer matrix A (i.e. all components of A belong to Z).

In the talk we will discuss some properties of low-dimensional integral
affine manifolds. In particular we will discuss the classification of two-
dimensional integrable affine manifolds that can be found in [2, 3]
including the following fact from [2]:

Theorem 1. Among compact two-dimensional surfaces only the
torus and the Klein bottle admit an integrable affine structure.

After that we will discuss the analogous results for the three-
dimensional integrable affine manifolds.

This work was supported by the Russian Science Foundation (project no. 17-
11-01303).
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INTEGRABLE SYSTEMS AND TENSOR INVARIANTS

Kozlov V. V.

Steklov Mathematical Institute of Russian Academy of Sciences,
Moscow, Russia vvkozlov@mi.ras.ru

Tensor invariants are tensor fields on the phase space invariant with
respect to the flow generated by the vector field of the system. Simple
examples include first integrals, fields of symmetries, volume forms of
the invariant measures etc. The vector field of an autonomous system of
differential equations is always a (trivial) tensor invariant.

The general idea is that for the integrability of a system of differential
equations in an n-dimensional phase space we need n — 1 independent
non-trivial tensor invariants (there are valence-related dependencies
between them). All known fundamental results on the integrability of
differential equations (the Euler-Jacobi theorem on the integrating factor,
the Lie theorem on the solvable algebra of symmetries, the Liouville
theorem on the integrability of Hamiltonian systems etc.) satisfy this
scheme.

The connection of this approach with the asymptotic method of
Kovalevskaya-Lyapunov-Painlevé will be discussed. A new Euler-Jacobi-
Lie theorem on the integrability, which embraces fields of symmetries
and invariant forms, is also presented.

MULTISTABILITY AND CHAOTIC OSTILLATIONS IN A
DELAYED NICOLLSON BLOWFLIES EQUATION

Kubyshkin E. P.!, Moriakova A R.?

LP.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
kubysh.e@yandex.ru
2P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
alyona_moryakova@mail.ru

We consider a differential-difference equation of the form
N(t) = —yN(t) + pN(t — 7)e~ M=t >0, (1)

proposed in [1] to describe the population dynamics of Nicholson’s
blowflies. Here N(t) is the size of the population at time ¢, p is the
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maximum per capita daily egg production rate, 1/a is the size at which
the population reproduces at the maxi- mum rate, v is the per capita
daily adult death rate, and 7 is the generation time.

The equation (1) for a > 0 u p >  has single positive equilibrium
state N* = a1In(p/7).

Let us move to dimensionless variables in equation (1), setting N (t) =
N*+a tz(t), (y7)™! = €1,aN* — 1 = b, and normalizing t — t7. As a
result, we obtain an equation in dimensionless variables

e1@(t) +(t) +bx(t — 1)+ f(z(t —1)) =0, (2)

flx)=aN*"1—z—€e")4+z(l—e"),

We study periodic solutions that bifurcate from N* and their evolution
with the changing of the patameters €1 and b with the assumption ¢; <
1. It is shown that from the equilibrium state N* a certain number
(depending on the nature of the parameter variation) of stable (and
unstable) periodic solutions can be bifurcated simultaneously. There is
a bifurcation of multistability.

With the further changing of the bifurcation parameters, each periodic
solution through a series of the period doubling bifurcations becomes
a chaotic attractor. In the dynamics of the solutions of the equation
chaotic multistability is observed.The obtained results make it possible
to understand the structure of the phase space of the equation and
explain the nature of the oscillations observed in the experimental data
of Nicholson. The general scheme for solving such problem for equations
of the form (2) is presented in [2].

Bifurcations of periodic solutions are related to the loss of stability
of the equilibrium state N*, which is determined by the location of the
roots of the characteristic equation

eiA + 1+ bexp(—A) =0, (3).

For b < 1 and 0 < €1 < g¢ all roots of the equation(3) lie in the left
complex half-plane, for b > 1 there are roots, lying in the right complex
half-plane. Border is the point b= 1. Let b = 1 4 &3, || < 1.

Theorem 1. There is g9 > 0, that for || < gy (¢ = (e1,9), |g| =
(£2 4 £2)Y/?) the entire set of roots of equation (3) is given by

Ar(e) = imk +1In (1 + e9) + AM(imk 4+ In (1 + &2); 1),
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k= £1,43,..., Ai(e) = (), where \(w;e) = —In(1 + &1(w —
In(l +e(w—In(1+e(w—...)))))) (Inw =In|w +iargw, —7 <
argw < m) analytical function for e and w for 0 < |e| < gy, |Rew| < dp.

We introduce the spaces lo u [3 sequences of the form
(21,2-1,23,2-3,---), 2zn € C, z_p = Z, satisfying conditions HZH%2 =
D k=13, |24 < o0, HZHIZ% = D j—13.. (Ae(e)2k]® < oo (|2 = 22).
Denote S(ro) = {z € Iy, ||2|[1, < r0},5(r0) = {2z € 15, ||2]|n < 7o}

In 5 we consider the system of differential equations

Zr = Mp(e)zp + Zlg?’)(z;s) + Zy(z¢) = Zi(zy¢), k==+x1,4£3,..., (3)

where the nonlinear operator Z(-) = (Z1(:), Z-1(:), Z3(+), Z_3(-),...)
(Z_1() = Zi(+)) : St(ro) — S(rp) is analytical for € and z for 0 < ¢ <
g0, 2 € SY(rg). Wherein Z®)(-) : S'(ry) — S*(ry) is homogeneous form
of order 3; [|Z*()|li, = O(I|2I})).

Denote S(Ry) = {u(s) € C[—1,0], ||u(s)|lc < Ro}-

Theorem 2. There are €y, Ry, ro > 0 and the system of differential
equations of the form (3), that for 0 < |e| < gy the behavior of solutions
of equation (2) with initial conditions from S(Ry) fort — oo is completely
determined by the behavior of the solutions of the system of equations
(3) with initial conditions from S'(rqy). The system of equations (3) is
determined uniquely.

An algorithm for constructing a system of differential equations (3)
is proposed.

We introduce real sequences of the form p = (p1,p3,...), pr
0, k = 1,3,..., Zk:l,&...kzp% < oouf = (61, 93,...), 0 < 9]‘
2w, 5 = 1,3,... Represent €; and &5 in the form e; = (cos), e
C?sin® signip, ¢ = (€3 + exsignes)V?, —m/2 < < /2.

The structure of the system of equations (3) allows us to introduce in
place of z; (k= £1,4£3,...) one “fast” variable and countable number
of “slow” variables of the form p and 6. Averaging the resulting system of
equations for the “fast” variable, we obtain a system of equations whose
limiting part (for ¢ — 0) will be look like

AV

pr = 1()pr + Ri(p, 0)(y(v) = sin® Psignip — cos” ¥(rk)* /2),

9k=@k(p,9), k=1,3,..., (4)

where functional Rp(-),©x(-) 27 is periodical for 6;, Ri(-) is a
homogeneous form of order 3 in p;.

46



Kongepernuyusa « Unmezpupyemvie cucmemvs u HeAUHETUHAA OUHAMUKA»

Theorem 3. To each exponentially stable (unstable) equilibrium state
p (1), 0% (¢) of the system of equations (4) for 0 < ¢ < (y corresponds
a periodic solution of equation (2) of the same kind of stability. This
periodic solution is analytic function of the parameter (, the main part
of which is determined by the indicated equilibrium state.

Theorem 3 allows us to reduce the problem of constructing of periodic
solutions of equation (2) bifurcating from the equilibrium state N* to
the problem of finding the equilibrium states of the system of equations
(4). The states of equilibrium make it possible to construct asymptotic
formulas for periodic solutions that determine the initial conditions for
the numerical obtaining of exact solutions of the equation and the study
of the further evolution of periodic solutions when the parameters of the
equation are changing.
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CLASSIFYING SUPERINTEGRABLE BERTRAND
MECHANICAL SYSTEMS

Kudryavtseva E. A.

Lomonosov Moscow State University, Moscow, Russia;
eakudr@mech.math.msu. su

The problem of description of superintegrable systems (i.e., systems
with closed trajectories in a certain domain) in the class of spherically
symmetric natural mechanical systems goes back to Bertrand and
Darboux. Dynamical and geometric properties of such systems have
been studied by many mathematicians (Killing, Besse, Perlick, Kozlov,
Borisov, Mamaev, Santoprete, Ballesteros, Enciso, Herranz, Ragnisco).
However in full generality, the problem of description of all such systems
remained open because of the so-called “problem of equators” (here, by
an equator we mean a parallel that is a geodesic).

Let us proceed with precise statements.

Bertrand proved [1] that, in Newtonian mechanics, the Kepler-
Coulomb potential V;(r) = —a/r+b and the harmonic oscillator (Hooke’s)
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potential Vi(r) = ar? + b (a,7 € R, a > 0) are distinguished by the
property that:

e all the bounded non-singular trajectories are closed and
e there exist non-circular non-singular closed orbits.

Natural mechanical systems possessing the above property will be called
Bertrand systems. Other definitions of Bertrand-type systems, as well
as their classifications, are discussed in [2]—[4].

Darboux [5] and Perlick [6] independently extended Bertrand’s
theorem as follows. They obtained a complete description of all spherically
symmetric Bertrand systems, whose underlying Riemannian manifolds
of revolution have no equators. Similarly to the Bertrand [1] result (the
case of a punctured Euclidean plane), the systems from their classification
form two finite-parametric families:

(I') the Darboux-Perlick family of systems with the Kepler-Coulomb
potentials and

(IT") the Darboux-Perlick family of systems with the harmonic oscillator
(Hooke’s) potentials.

Clearly, the Darboux-Perlick families (I’) and (II") do not contain such
famous Bertrand systems on surfaces of revolution having equators as,

e.g.,

(I) the systems with the Kepler-Coulomb potential on the round spheres
(or their “rational branched coverings”),

(IT) the systems with the harmonic oscillator (Hooke’s) potential on
pear-shaped surfaces of revolution whose equators split them into
two subsurfaces from the Darboux-Perlick family (II’), and

(III) the systems with zero potential on (pear-shaped or spherical)
Tannery surfaces of revolution classified by Besse |7].

We give a complete description of all spherically-symmetric Bertrand
systems [8]. In particualar, we do not assume that the underlying
Riemannian manifold of revolution has no equators. The systems from
our list are parametrized by smooth functions, so they form an infinite-
dimensional set. We prove, in particular, the following

48



Kongepernuyusa « Unmezpupyemvie cucmemvs u HeAUHETUHAA OUHAMUKA»

Theorem. For any spherically-symmetric Bertrand system, its
restriction to the cotangent bundle of the union of all non-circular non-
singular closed orbits coincides with the restriction to a “belt” of one of
the systems from the families (I'), (II'), (1), (I1I), (III) from above.

This work was supported by the Russian Science Foundation grant (project
no. 17-11-01303).

REFERENCES

1. Bertrand J., “Théoréme relatif au mouvement d’un point attiré vers un centre
fixe,” C. R. Acad. Sci. Paris, 77, 849-853 (1873).

2. Zagryadskii O. A., Kudryavtseva E. A., Fedoseev D. A., “A generalization of
Bertrand’s theorem to surfaces of revolution,” Sbornik Math., 203, No. 8,
1112-1150 (2012).

3. Kudryavtseva E. A., Fedoseev D. A., “Mechanical systems with closed orbits
on manifolds of revolution,” Sbornik Mathematics, 206, No. 5, 718-737
(2015).

4. Kudryavtseva E.A., Fedoseev D.A., “On BertrandsD™s manifolds with
equators,” Mosc. Univ. Math. Bull., 71, No. 1, 23-26 (2016).

5. Darboux G., “Etude d’une question relative au mouvement d’un point sur
une surface de révolution,” Bulletin de la S. M. F. 5, 100-113 (1877).

6. Perlick V., “Bertrand spacetimes,” Classical Quantum Gravity, 9, No. 4,
1009-1021 (1992).

7. Besse A., Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin
Heidelberg New York (1978).

8. Kudryavtseva E. A., Fedoseev D.A., “Superintegrable natural mechanical
Bertrand systems,” Itogi Nauki i Tekhniki, Ser. “Modern Math. and its
Appl. Thematical Surveys”’, 148, 37-57 (2018). Engl. version: Journal of
Mathematical Sciences (to appear).

VIV MODELLING FOR FLEXIBLE STRUCTURES
USING WAKE OSCILLATOR METHOD

Kurushina V.!?, Pavlovskaia E.!, Wiercigroch M.!

LOentre for Applied Dynamics Research, School of Engineering,
University of Aberdeen, Kings College, Aberdeen, Scotland, United
Kingdom, AB2j 3FX;

2 Department of Transport of Hydrocarbon Resources, Institute of
Transport, Industrial Unwersity of Tyumen, 38 Volodarskogo Street,
Tyumen, Russia, 625040; v.kurushina@outlook.com

Structures like risers, free pipeline spans and umbilicals in the water,
or cables, tall buildings, suspension bridges in the air, can be subjected to
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an additional loading due to vortex-induced vibration (VIV). Influence
of the fluctuating lift and drag forces should be taken into account at the
design stage of these slender structures. Currently, the models involved
in VIV prediction still lack precision or require significant computational
time.

The current study is focused on improving VIV prediction accuracy.
The wake oscillator method, used in this research, provides advantageous
computational time by using self-excited limit cycle oscillators to model
force fluctuations. However, the precision of modelling depends on the
choice of empirical constants which allow simplifying the calculations.

This research includes developing a new model of wake oscillator
type for the case of a flexible structure moving in both directions of the
flow and across the flow. The model is based on the results of studies [1-
3]. The scope of research is limited to a uniform flow velocity profile as
a necessary step before investigating VIV in sheared flow in the future.
The authors consider 6 various nonlinear damping types for the wake
oscillator equations and conduct calibration of the empirical coefficients
using the experimental data [4]. Application of alternative damping
terms results not only in improving prediction accuracy but also in
qualitative differences in generated trajectories of motion and modulated
displacement signals. As the outcome of this study, the model versions
with Van der Pol dampings are the most suitable for VIV predictions
for flexible structures.
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BIFURCATIONS IN 3 D.O.F. INTEGRABLE
HAMILTONIAN SYSTEMS

Lerman L. M.

Lobachevsky State University of Nizhny Novgorod, Russia;
lermanl@mm.unn.ru

Studying integrable Hamiltonian systems always leads to an
investigation of bifurcations. This is related with the fact that in such
systems for the related Poisson action all its singular orbits (of dimension
lesser than the half of the manifold dimension) are met in families.
For instance, periodic orbits being 1-dimensional orbits of the induced
Poisson action belong to a 1-parameter families, 2-dimensional
Lagrangian tori belong to 2-parameter families, etc. This implies that if
one moves along the family an orbit being more degenerate (in transverse
direction) than neighboring orbits can be met and hence one may expect
branching the family. Also bifurcations are met at the study of families of
integrable systems, then parameters of the family play a similar role. It
is important to stress that common tool to study integrable systems uses
some
assumptions on the linearized system at the related Poisson orbits (like
to be a Cartan algebra for the related set of commuting integrals, etc).
Such properties are usually violated at the bifurcation and one needs to
use another tool to study the related orbit structure.

We discuss this topic for 3 degree of freedom integrable Hamiltonian
systems. In this case (if no outer parameter exist) the related integrable
system can contain 1-parameter families of periodic orbits and
2-parameter families of Lagrangian 2-tori. Thus one can meet
degenerations of codimension 1 and two. Related structures of Liouville
foliations in saturated neighborhoods of the degenerated orbits and their
"perestroika’s" will be presented.

ol



Conference “Integrable Systems and Nonlinear Dynamics”

THE AUTOWAVE FRONT STATING IN THE
DISCONTINUOUS MEDIA

Levashova N.T.!, Orlov A.O.?

L Lomonosov Moscow State University, Faculty of Physics, Moscow,
Russia; natasha@npanalytica.ru
2Lomonosov Moscow State University, Faculty of Physics, Moscow,
Russia; orlov.andrey@physics.msu.ru

We investigate a following problem

ef——e— = f(u,z), —-l<zxz<l, t>0; (1)
u(—=1,t,e) = 1, u(l,t,e) = 3, t >0; wu(x,0,¢) = upir(x, ), t >0,

(2)

where ¢ is a small parameter, f(u,z) is a function that undergoes
discontinuity at point z = —0.5:

u— 1, 1 <z<—05
flu,z) =
(u—p1)(u—p2)(u—y3), —0.5<x<1,

i, © = 1,2,3 are constants for which the inequalities hold:

1 < 2 < 0.5(¢p1 + @3) (3)

and

©3(2 — 1) + 1(p3 — pa) exp (gpi\_/;l (z — 0-3))

02 — @1 + (3 — p2) exp <903 — 7 (v — 0-3))

eV2

We investigate the C! solution that has a front moving form and at a
certain moment of time gets inside the area of attraction of the solution
of the stationary problem [1]:

Uinigt =

d2
52d—;; = f(u,x), —1l<xz<l; u(-1¢)=p1, ulle)=yps;. (4)

The inequality (2) guarantees that the front is moving in the direction
opposite to the z-axis [2].
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For the mentioned solution of problem (1) the asymptotic
approximation Uj(z,t,¢e) of the first order in the exponents of ¢ is
constructed. It is a sum of regular part and the transition layer functions:

©1 + RO(&))t) + €R1(€07t)7 —1 S €T S _057
U(z,t,e) = o1+ QS (6 t) + Q7 (6 t), —05<z<um: (5)
o3+ QS (Ent) + Q1 (6 t), T <z <1

Here we introduced the stretched variables &y = (x 4+ 0.5) /e, & = (z —
x,)/e, where x, is the point of moving front localization.

To prove the existence of such a solution in the domain (z,t) =
[—1; 1] x R* we use the method of differential inequalities [3|. For that
we use the method of upper and lower solutions. The upper solution,
B(x,t,e) for problem (1) is the same as one for the stationary problem
(3). The lower solution a(z,t,¢) is constructed as modification of the
first order asymptotic approximation (4):

01+ Ro(&o,t) + eR1(&o,t) — e(r(&o, t) + 1), —1 <2< -0.5
oz, t,2) = $ o1+ Q5 (6 t) + 2@ (€ t) — (@) (& t) + 1), —05 <@ < s
3+ Q5 (6 D) + Q1 (6 ) — (@G ), w<a <1
(6)
Positive constant g and functions r, ¢F) are chosen in a way that
function (6) satisfies the definition of the lower solution given in [3].

The authors were supported by the Russian Science Foundation (project no. 18-
11-00042).
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ACTION-ANGLE DUALITY VIA HAMILTONIAN
REDUCTION

Marshall 1.D
HSE, Moscow, Russia;

imarshall@hse.ru

[ will give a survey type presentation describing how Hamiltonian
reduction of trivially integrable free flows may give rise to so—called
dual pairs of integrable systems. This will be followed by a description
of results, obtained together with L. Feher, illustrating the construction.
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DEVELOPMENT OF THE DIFFERENTIAL
INEQUALITIES METHOD FOR NONLINEAR
ACTIVATOR-INHIBITOR SYSTEMS

Melnikova A. A.

Lomonosov Moscow State University, Moscow, Russia;
melnikova@physics.msu.ru

Models of the activator-inhibitor type are used in chemical kinetics,
biophysics, and ecology to describe the interaction of components of
different systems. The Murray and Meinhardt models [1, 2|, which
describe the formation of patterns in living nature, can be cited as
an example. In the paper [3], a model based on the FitzHugh-Nagumo
system is used to describe urboecosystems. These models are systems
of nonlinear parabolic equations. In this paper, we consider a similar
system in the case of small diffusion, which makes the problem singularly
perturbed. Consider the initial-boundary value problem

eWyy — 2uy = f (u,v,2,8), €204y — 20y = g (u,v, 7, ),

z € (a,b), te(0,7], )
uz(a,t) =ugy(b,t) =0, wvy(a,t) =v,(b,t) =0, te(0,T],
u(z,0) = upmir(z), v(x,0) =vpmu(x), x € la,b].
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where € > 0 is a small parameter, functions f(u, v, z, ) and g(u, v, z, )
are sufficiently smooth functions.
We consider the following hypotheses:

(H1) The equation f(u,v,z,0) = 0 treated as an equation for u has
exactly three roots u = ¢'(v,z), u = ¢°(v,x), u = ¢"(v, ) such
that ¢'(v,2) < ©’(v,2) < ¢"(v,z) everywhere in the domain
(v,x) € I, x [a,b], moreover f,(¢""(v,z),v,2,0) > 0 and
ful@®(v,2),v,2,0) < 0. (Here I, is some range of variable v.)

(Hs) Each of the equations k' (v, z) = g(¢""(v,2),v,7,0) = 0, has
a unique solution v = v""(x) € I,, moreover, the inequalities
v'(z) < v"(x) and W (v (2), z) > 0 hold for all & € [a, b] .

(Hs) The inequalities f,(u,v,z,0) > 0 and g,(u,v,z,0) < 0 hold
everywhere in the domain (u,v,z) € I, x I, X [a,b]. (Here I,
is some range of variable u.)

Condition 3 ensures the interaction of the components by activator-
inhibitor type, where u-component is an activator and v-component is
an inhibitor.

In this work, we prove the asymptotic approximation of the solution
of the system (1) with an internal transition layer. The proof of the
existence theorem under these conditions requires a substantial
development of the method of differential inequalities in comparison with
the works [4,5]. In [6], a close problem was considered for constructing
upper and lower solutions for a model system of the FitzHugh-Nagumo
type. In [7], for an example of the system (1) an asymptotics and
numerical solution of the moving internal layer was obtained. The
algorithm for constructing the asymptotic approximation for stationary
and nonstationary problems coincides with that described in [4,5].

The author was supported by the Russian Scientific Foundation (project no. 18-
11-00042).
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INTEGRABLE BILLTARDS WITH NONCONVEX
ANGLES ON THE BOUNDARY

Moskvin V. A.

Moscow State University, Moscow, Russia; aoshi.k68@gmail.com

A billiard is a dynamical system in which a particle alternates between
motion in a straight line and specular reflection from a boundary. You
can find overwiew of modern billiard researches in S.L. Tabachnikov’s
book. [1] We used Fomenko’s theory [2] to describe topology of joint
integrable surfaces. In this report I'm going to discuss billiards bounded
by arcs of several confocal conics such that they contains nonconvex
angles. Note that such billiards are integrable (the second integral is
simply the confocal quadric parameter). Since there is no tangent in
vertex of nonvconvex angle, the billiard reflection cannot be defined
there in the usual way. The integral trajectory of the flow going into
a singular point can not be extend for the all values of the parameter
(time). In other words, the corresponding flow is not complete in the
sense of the theory of differential equations. In contrast to the classical
case of complete flows, the regular leaves of the Liouville foliation are
the spheres with handles and punctures, rather than Liouville tori.

Theorem 1. Any billiard’s domain bounded by arcs of several
confocal conics such that they contain one nonconvexr angle is equal to
one of the 14 billiards represented on Fig. 1.

Theorem 2. Let S be the elementary billiard with nonconvex angles
represented on the Fig.1. Then the rough molecules for this billiard has
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the form represented on the Fig.2. The edges with the marks correspond
to the two-dimensional spheres with two handles without a point.
Complexes T, where i # j and i,j = 1;2 are homeomorphic to a
disjoint union of tori. To one of this tori the circle is glued along a
point, whose projection onto the billiard domain goes to the vertex of a
nonconvex angle.

Fig. 1. Billiard’s domains.

rl/A
So.Lz, L2 A—r§—+—B+B* :
A
L, L, L.,s' s!,

e e
— A

So A—Ti4 BTk
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S, S., Sa A— M3 A*+TXI ——T3—A

Fig. 2. Fomenko’s molecules.

The author was supported by the Russian Foundation for Basic Research (grant
No. 16-01-00378-a) and the program “Leading Scientific Schools” (grant no. NSh-
6399.2018.1).
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PROPAGATION AND BLOWING-UP OF FRONTS IN
REACTION-DIFFUSION-ADVECTION PROBLEMS
WITH MODULAR ADVECTION

Nefedov N. N.

Department of Mathematics, Faculty of Physics, Lomonosov Moscow
State University, Moscow, Russia;
nefedov@phys.msu.ru

We present recent results for some classes of IBVP (initial boundary
value problem) for some classes of Burgers type equations where we
investigate moving fronts by using the developed comparison technique.
We also present our recent results of investigation of singularly perturbed
reaction-advection-diffusion problems, which are based on a further
development of the asymptotic comparison principle (see, [1-3]).

For these initial boundary value problems we proved the existence
of fronts and give its asymptotic approximation. We illusrate our results
by the problem

O*u ou  Ou
- _ N —— <
€5 A(u,x,t)ﬁaj 5 flu,z,t,e), x€(0,1),0<t<T,
u(0,t,e) = u(t), wu(l,te)=u'(t), tel0,T),
w(z,0,e) = wpit(x,€), x €[0,1].

An asymptotic approximation of solutions with a moving front is
constructed in the case of modular and quadratic nonlinearity and
nonlinear amplification [4]. The influence exerted by nonlinear
amplification on front propagation and collapse is determined. The front
localization and the collapse time are estimated.

This work was supported by the Russian Science Foundation (project N 18-11—
00042).
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ON 0/1-MATRICES HAVING MAXIMUM
DETERMINANT

Nevskii M. V.!, Ukhalov A. Yu.?

LP.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
mnevskbb@yandex.ru
2P. G. Demidov Yaroslavl State University, Yaroslavl, Russia;
alex-uhalov@yandex.ru

We give some new necessary conditions for maximality of
0/1-determinant of a given order n. Our approach lies in the field between
linear algebra and geometry of convex bodies. At the same time, we
demonstrate some examples how geometric results can be expressed by
means of linear algebra. Basic ideas and relations are given in [2], [3],
[4].

Let n € N, @, = [0,1]". By a/b-matriz, we mean a matrix, whose
any element is equal to one of two numbers a or b. Values h,, and g, are
defined as maximum determinants of 0/1 and —1/1-matrices of order
n respectively. Denote by v, the maximum volume of an n-dimensional
simplex contained in @),,. These numbers are connected by the equalities
Gns1 = 2" hy, hy = nlyy,, see [1].

I[f maximum 0/1-determinant of order n is known, it is possible to
construct a maximum volume simplex in @),,. Let us enlarge the row set
of such a determinant by the row (0,...,0). Then simplex S with these
vertices is contained in (), and has maximum possible volume. Nonzero
vertices of an n-dimensional simplex in (), with maximum volume one
can also obtain in the same way using the columns of a maximum 0/1-
determinant of order n. On the other hand, if any n-dimensional simplex
S C @, with the zero-vertex has maximum possible volume among
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all simplices in (), then the coordinates of its non-zero vertices, being
written in rows or in columns, form maximum 0/1-determinants of order
n.

Theorem. Suppose M is an arbitrary nondegenerate 0/1-matrix of
order n. Let A be the matrix of order n + 1 which appears from M
after adding the (n + 1)th row (0,0,...,0,1) and the (n+ 1)th column
consisting of 1’s. Denote A~ = (1;;). Then the following propositions
hold true.

1. Foralli=1,...,n,

2. If |det(M)| = h,,, then for alli=1,....,n

n+1

Z ;] = 2. (2)

3. If for some @ we have the strong inequality

n+1

> il >2, (3)
j=1

then |det(M)| < h,,.

To sketch the proof, let us consider the simplex S with the node
matrix coinciding with A. Then the conditions above can be written in
the terms of the so called axial diameters of S, see [4] for the detailes.
Now it is sufficient to use the fact that all the axial diameters of a
maximum volume simplex in (),, are equal to 1.

It is easy to find out, that the inverse proposition to the second part
of this statement is not true.

Note that 0/1-matrices having maximum determinant can be
obtained from maximum determinant —1/1-matrices by the special
procedure described in [5|. Therefore, the theorem also can be used
to control the extremality of —1/1-matrices. As an example, we can
show that biggest known by 2003 —1/1-determinant of order 101 is not
maximum. This tremendous —1/1-matrix was constructed by William
Orrick and Bruce Solomon, see http://www.indiana.edu/ maxdet/
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d101.html. With the use of Wolfram Mathematica, we obtain that the
corresponding matrices M and A satisfy the third condition of the
theorem. Consequently, the huge value

[ det(M)] = [det(A)[ =

89740816577942302983638241586569761487623964058002457022666931152343750

is yet strictly less than higg. This also means that in this case the volume
of simplex S C Q199 is not maximum possible.

This work was carried out within the framework of the state programme of the
Ministry of Education and Science of the Russian Federation, project
Ne 1.10160.2017/5.1.
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HURWITZ NUMBERS AND MATRIX INTEGRALS
LABELED WITH CHORD DIAGRAMS

Orlov A. Yu.

Institute of Oceanology, Moscow, Russia; orlovsQocean.ru

We consider products of complex random matrices from independent
complex Ginibre ensembles. The products include complex random

matrices Z;, Z;r ,i = 1,...,n, and 2n sources (these are the complex
matrices Cy, CF, ¢ = 1,...,n, which play the role of parameters). We
consider collections of products X7, ..., X, constainted by the property;,

that each of the matrices of the set { Z;C}, ZJC;, i=1,...,n}isincluded
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only once on the product X = X;..--Xp. It can be represented
graphically as a collection of v polygons with a total number of edges
2n, and the polygon with number a encodes the order of the matrices
in X,. The matrices Z; and.£ﬂ4are distributed along the edges of this
collection of polygons, and the sources are distributed at their vertices.
The calculation of the expected values involves pairing the matrices Z;
and ZZ-T . There is a standard procedure for constructing a 2D surface
by paiwise gluing edges of polygons, this procedure results to a graph
embedded in the surface ¥y« of some Euler characteristic E* (this graph
also known as ribbon graph or fat graph). We propose a matrix model
that generates spectral correlation functions for matrices X,
a =1,..., Fin the Ginibre ensembles, which we call the matrix integral,
labeled network chord diagram. We show that the spectral correlation
functions generate Hurwitz numbers Hy- that enumerate nonequivalent
branched coverings of Yg«. The role of sources is the generation of
ramification profiles in branch points which are assigned to the vertices of
the embedded graph drawn on the base surface ¥g«. The role of coupling
constants of our model is to generate ramification profiles in F' additional
branch points assigned to the faces of the embedded graph (the faces
of the 'triangulated’ ¥g-). The Hurwitz numbers for Klein surfaces can
also be obtained by a small modification of the model. To do this, we
pair any of the source matrices (in that case presenting a hole on Yg«)
with the tau function, which we call Mobius one. The presented matrix
models generate Hurwitz numbers for any given Euler characteristic of
the base surface E* and for any given set of ramification profiles
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ENUMERATION OF NON-DEGENERATE RANK 0
SINGULARITIES FOR INTEGRABLE HAMILTONIAN
SYSTEMS WITH THREE DEGREES OF FREEDOM

Oshemkov A. A.

Lomonosov Moscow State University, Moscow, Russia,
a@oshemkov.ru

The problem of topological classification of singularities for integrable
Hamiltonian systems has several aspects depending on the choice of a
class of singularities and an appropriate equivalence relation. We consider
non-degenerate singularities up to topological equivalence, i.e., up to a
homeomorphism preserving leaves of the Liouville foliation defined by
the integrals of the system.

By the Eliasson theorem, the local classification (not only topological
but even symplectic) of non-degenerate rank 0 singularities for integrable
Hamiltonian systems is described by their type, i.e., by a triple of numbers
(ny1,n9,n3) which are equal respectively to the number of elliptic,
hyperbolic, and focus components of a singularity. In the case of semi-
local classification there is one more parameter k which is the complexity
of a singularity, i.e., the number of singular points on the leaf.

The question on semi-local classification of singularities of various
possible types was considered in many papers. Note that elliptic
components can be ignored (from the topological point of view). The
first non-trivial result was obtained by L.M. Lerman and Ya.L. Umanskii
in 1984 (see [1]). They proved that there are exactly 4 saddle-saddle
singularities (i.e., singularities of type (0,2,0) and rank 0) with one
singular point on a singular fiber (i.e. of complexity 1). Saddle-saddle
singilarities of complexity 2 were classified by A.V.Bolsinov and
V.S. Matveev (see [2], [3]). It turns out that there are 39 topologically
different singularities of such type. The complete answer in purely
hyperbolic case, i.e., for singularities of type (0,n,0) and rank 0, was
obtained by A.A.Oshemkov in paper [4], where a general algorithm
of their enumeration was described and the lists of such singularities
of small complexity were obtained. For example, there are 32 rank 0
singularities of type (0,3,0) and complexity 1. The classification of rank
0 singularities of type (0,0,m) for arbitrary complexity (i.e., purely focus
singularities) was done by A.M. Izosimov [5].
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The only type of singularities that is not investigated completely
is the singularities with both hyperbolic and focus components. The
simplest case when such situation is possible corresponds to saddle-focus
singularities in systems with three degrees of freedom, i.e., singularities
of type (0,1,1).

We will explain some approaches to semi-local classification of
singularities of different types and give lists of saddle-focus singularities
of small complexity.

The author was supported by the Russian Science Foundation (project no. 17-

11-01303).
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FORMAL AND EXACT DARBOUX
TRANSFORMATIONS FOR VECTOR mKdV AND
RELATED EQUATIONS

Papamikos G.

School of Mathematics, University of Leeds, Leeds, UK;
geopap19830@gmail . com

In this talk I will present some of the integrability properties of
a multicomponent generalisation of the modified Korteweg de Vries
equation. In particular, I will present a Lax structure of the equation
which T will use to construct formal and closed form Darboux
transformations. I will also present other integrability properties such
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as its hierarchy of conservation laws, generalised symmetries and its
recursion operator. In the end I will remark on its solutions and its
connection to a multicomponent version of the sine-Gordon equation
and other related equations.
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HIGHER HIROTA DIFFERENCE EQUATIONS AND
THEIR REDUCTIONS

Pogrebkov A. K.

Steklov Mathematical Institute RAS, Moscow,
Russia; pogreb@mi.ras.ru

NRU “Higher School of Economics”

We derive and study higher analogs of the Hirota difference equations.
We also consider integrable systems that appear as 1 + 1 dimensional
reductions of these difference equations and their continuous limits.

MULTIPLIERS OF AN ANTIPHASE SOLUTION IN A
SYSTEM OF TWO COUPLED NONLINEAR
RELAXATION OSCILLATORS

Preobrazhenskaia M. M.

Yaroslavl State University, Russia, Yaroslavl; rita.preo@gmail . com

Let’s consider the system of non-linear differential-difference equations
[1-3]
g = [Af(ui(t — 1)) + bg(uz(t — h)) In(u/u1)]u, 1)
tg = [Af(uz(t — 1)) + bg(ui(t — h)) In(us/usg)]us,
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which is used to model the association of two neurons with a synaptic
connection. Here h > 0 characterizes a delay in the connection chain,
u1(t),uz(t) > 0 are normalized membrane neurons potentials, the
parameter A > 1 characterizes an electrical processes rate in the system,
b = const > 0, u, = exp(c)) is a threshold value for control interaction,
¢ = const € R, the terms bg(u;_1)In(u,/u;)u; model synaptic
interaction. The functions f(u), g(u) € C*(R,), R, = {u e R:u >
0}, satisfy a following conditions:

FO0) =1 f(u) +a,uf'(u),u?f"(u) = O(u™) as u — +oo,
a = const > 0; Yu >0 g(u) >0, ¢g(0) =0; g(u) —1,
ug'(u), u*g"(u) = O(u™) as u — +o0.

For any natural n it is possible to choose the parameters a, b, c,
h such that system (1) has a periodic antiphase solution containing n
asymptotically high bursts on a period. The solution has a following
form: uj = exp(x*(t)/e), us = exp(z*(t + A)/e), where A = T*/2,
e=1/A< 1, 2*(t) is a T*-periodic solution of equation

= fexp(xz(t —1)/e)) + b(c— z)g(exp(z(t + A — h)/e)).

It is proved that the linearised on the antiphase solution system

Y1 = —bg(exp(z.(t + A —h)/e))n + Alz«(t — 1), e)n(t — 1)+
+b(c — 2.(1))B(zs(t + A — h),e)y2(t — h),

o = —bg(exp(w,(t — h)/e))ye + A(w.(t = A —1),)(t — 1)+
+b(c— 2 (t — A))B(z.(t — h),e)n(t — h),

A(z,e) = f'(exp(z/e)) exp(z/e) /e, B(z,e) = ¢ (exp(z/e))exp(z/e)/e,
has unit multiplier, two multipliers which modules are close to 1, but

less than 1, and all other multipliers are exponentially small. It means
that the antiphase solution (uj,u3) is exponentially orbitally stable.
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NEW FAMILY OF EXACT SOLUTIONS FOR THE
RIEMANN EQUATION

Rassadin A. E.

Nizhny Novgorod Mathematical Society, Nizhny Novgorod, Russia;
brat_ras@list.ru

The Riemann equation

ov ov

is known to be very popular model in theory of nonlinear waves [1].
On the other hand for equation (1) there is the following symmetry
generator |2|:

N 0 0 0
X = €(t,2,0) 5+ (00, — ) + (0,2 = 0) + 0 (2, 0)) =+ (0, 2= vt) - (2)
where &, n and ( are arbitrary quite smooth functions.

Let us choose ¢ = 0, £ = t? and n = x — vt then operator (2) is
reduced to the next one:

0 0 0
_ 29 Y o
X =t t+a;‘t + (x —vt) ” (3)

Solutions of Lie’s equations for operator (3) are equal to:

_ t x
t — r = — D = — t 4
T T=o—— v=v+a(r—uvt), (4)
where a is a parameter of the Lie group (4).
[t means that if v(x,t) is exact solution of equation (1) then

azx 1 x t
£ =— i 5
vlz,t) 1—at+1—atv<1—at’1—at> (5)

is exact solution of the Riemann equation too.

In particular if o(x, t) is solution of the Cauchy problem for equation
(1) with initial condition @y(z) then function (5) is solution of the
Cauchy problem for the same equation with initial condition vy(x) =
—ax + Uy(x).
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For instance let v(x,t) be the well-known Bessel-Fubini expansion
[1] corresponding to initial condition vg(x) = Ay sin kg x:

_ - Jn(nko Aot) .
=24 § —1)ntt
o(z,t) 0 n_l( ) o Aot sinn ko x (6)

where J,(...) are Bessel functions of n—th order therefore in accordance
with formula (5) the next function

- n—|—1 nkoAgt . nl{?()ZU
v(@,t) = TT—ai Z nkot (1—a >Sm(1—at) (7)

=1

obeys both the Riemann equation and initial condition vy(z) = —ax +
Ag sin kg x.

As an another example of the approach suggested let us take the
following exact solution of equation (1) [3]:

v(x,t) = Agexp(—az?®) [1+ V(z,t)] (8)

where function V (x,t) is expressed via Chebyshev-Hermite polynomials

a(n+1)) exp(—anz?).

i \/ & n+ Aot H(
n=1

Initial condition for solution (8) is equal to ¥y(x) = Ay exp(—a 2?)
hence expression

ax
1—a

ax

m] 1+ V(0] (9)

v(z,t) = — t-I—AOeXp[

where

_y ! (ontyHn(M)exp{_mﬂ

“—~ (n+1)! 1—at —at (1—at)?
is solution of the Cauchy problem for equation (1), initial condition for
it being vo(z) = —ax + Ay exp(—a z?).

In the report presented behaviour of solutions (7) and (9) under
different signs of parameter a is under consideration.
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One can observe that operator (3) coincides with operator of projective
group from Lie algebra of the Burgers equation [1]:

O o 0%

a " Vor Fas

Nevertheless in this circumstance there is no anything strange because

under p = 0 equation (10) turns into equation (1).

In conclusion it is necessary to stress that under another choice of
functions &, ¢ and n in operator (2) one can find solution of system of
Lie’s equations:

(10)

i s i

=¢(t,z,0), - =((v,z —vt) +tn(v,z —0vt)+0&(t, T,0), o =n(v,z —vt),

H)=t, 70 =z, 50)=uv

which differs sharply from solution (4) and therefore another family of
exact solutions of input equation starting from known solutions (6)-(9)
will arise instead of formula (5).

The author was supported by the Russian Foundation for Basic Research (project
no. 18-08-01356-a).
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ABOUT AVERAGE TIME PROFIT IN STOCHASTIC
MODELS OF HARVESTING A RENEWABLE RESOURCE

Rodina L. 1.

Viadimir State Unwersity, Viadimir, Russia; LRodina670@mail .ru

Since 70th years of the last century problems of optimal harvesting of
a resource in stochastic models was started to cause interest of scientists.
One of the first works devoted the given subjects apparently is [1] in
which it is shown that stochastic fish population can be harvested to
achievement of certain level (escapement level) that does not dependent
on the current size of population. The review of the literature devoted to
questions of optimal harvesting of the populations that given by various
stochastic models, is resulted in [2].

We consider models of harvesting a renewable resource given by
differential equations with impulse actions, which depend on random
parameters. In the absence of harvesting the population development is
described by the differential equation & = g(x), which has the asymptotic
stable solution ¢(t) = K, K > 0. We assume that the lengths of the
intervals 0, = 7, — 7;,_1 between the moments of impulses 7, are random
variables and the sizes of impulse action depend on random parameters
vk, where 0 € Q1 C [aq,01], 0 < a1 < 1 < o0, v, € Q9 C [0,1],
k=1,2, .... 1t is possible to exert influence on the process of gathering
in such a way as to stop preparation in the case where its share becomes
big enough to keep some part of a resource for increasing the size of the
next gathering. In this case the share of an extracted resource will be
equal

/ Vg, ecam v < Ug,
g {uk, eclin Vi = Up.

Thus, we consider the stochastic model given by the differential equation
with impulse actions

.I':g( )7 t7é7—k7

1
ZL‘(Tk)=< vk,uk)a;‘Tk—O k=1,2,.... (1)

Let’s designate U = {u : @ = (uq, .. ...)}, e ug € [0, 1],

éi(el,...,ek,...>, Qkéﬁl; ﬁi(vl,...,vk,...), UkEQQ;
wk:(ek,vk), gi(gl,...,fk,...).
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Let X3 = X3(0,0, 1) be a quantity of a resource before gathering in

the moment 7., £k = 1,2, ..., depending on lengths of intervals 64, . . ., 0,
between the moments of gathering, a resource share ¢; = £(v;,w;), i =
1,...,k — 1, collected at the previous time moments and initial value

xo. For any x¢y > 0 we will define a limit

which we name average time profit from resource extraction. If this limit
does not exist, we will consider the lower limit.

We construct the control @ = (uq, . .., uy, ... ), which limits the share
of an extracted resource at each time moment 75 so that the quantity of
the remaining resource, starting with some moment 7y, is no less than a
given value z > 0. For given control we received estimations of average
time profit and conditions at which exists with probability one a positive
limit (2). Thus, we describe a way of long-term extraction of a resource
for the gathering mode in which some part of population necessary for
its further restoration constantly remains and there is a limit of average
time profit with probability one.

The stoshastic model corresponding to the differential equation with
random parametres (1), is described in work [3].

Let ¢(t, x) be the solution of differential equation & = g(z), satisfying
to the initial condition (0, z) = z, where t > 0, z > 0. If § € 4, then
function (6, x) is a random variable on the set €. For any m € N we
will define o, = (w1, ...,wy,) and random variables A,, = A, (o, x),

B, = Bp(om, ) :

A = (01, 3), Apir = 001, Ap(1 — lr));
By =K, Bpi =01, Bi(1=4)), k=1,...,m—1

Here
Vg, ecm v < Ug,

be = brlon, x) = Up, €cIm Vg = Up = 1 — T ) (3)
Ap(og, x)

Uy = Ui (Om, ) also we will define by (3). The letter M we will designate
the expectation of random variable, M6# — expectation of lengths of
intervals 01,60s, . ...
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Theorem 1. Let following conditions are satisfied:

1) the equation & = g(x) has the asyptotical stable solution ¢(t) =
K and interval (K;, Ky) is the area of an attraction of this solution
(0< K < K < Ky < 400).

2) 0 C [041,61], )y C [&2,62], where 0 < a1 < 51 <00, 0 <a <

fa < 1.
Then for all m € N, z € (K1, K) and xy € (K, K3) there is a
control w € U such, that inequalities

m

3

H.(0,0,20) < H (8,0, 2
k=1 =1

are satisfied with probability one.

Theorem 2. Let conditions of the theorem 1 are satisfied and
g'(z) <0 for all x € (L, Ly), where K1 < Ly < K < Ly. Then for all
(x,z0) € (L1,K) x (Kj, Ks) at some control u € U with probability
one exists a positive limit

1
—— . lim M(Auf,) = — - lim M(B,4,),

0 n—co f n—oco

H(8,0,2) =

not dependent on initial value xy € (K1, K5).

The author were supported by the Russian Foundation for Basic Research
(project no. 16-01-00346-a).
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TOPOLOGICAL ATLAS OF INTEGRABLE PROBLEMS
OF RIGID BODY DYNAMICS

Ryabov P.E.!2, Sokolov S. V.23

U Financial University under Government of the Russian Federation,
Moscow, Russia; peryabov@fa.ru
2 Institute for Machines Science RAS, Moscow, Russia;
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The report presents the problems and results of the study of phase
topology of integrable systems with two and three degrees of freedom of
the dynamics of the rigid body, supposing the Lax representation. The
basis of such research was the notion of a topological atlas, introduced
by M. P. Kharlamov in the early 2000s for irreducible integrable systems
with three degrees of freedom [1|. The topological atlas includes an
analytical description of the critical subsystems of the complete
momentum map, each of which, for fixed physical parameters, is an
almost Hamiltonian system with fewer degrees of freedom; a classification
of equipped Smale isoenergetic diagrams with a complete description
of the regular Liouville tori and their bifurcations; determination of
the types of all critical points of the complete the momentum map
and the creation program-constructor of topological invariants. As it
turned out, to date, local and semi-local study of critical subsystems is
an effective tool for the construction of rough topological invariants.
For integrable Hamiltonian systems with n degrees of freedom with
polynomial or rational integrals, the set of critical values of the the
momentum map JF can be written as P = 0, where P is a polynomial
of phase variables. The decomposition of it into irreducible factors P =
[1; L; leads to the determination of the critical subsystem of M; as
the set of critical points of the zero level of a function L;. It turns
out that the critical point of rank k is locally the intersection point of
n—k subdomains of critical subsystems. Integrals L; of these subsystems
generate symplectic operators Ag,, which determine the type of critical
point. Bifurcations that occur at the intersection of F(M;) surfaces at
a point F(x), generate a semi-local type of critical point. This approach
leads to an analytical description of topological invariants only in terms
of the first integrals. For some integrable problems of rigid body dynamics
(the Kovalevskaya top in the double force field, the Kovalevskaya-Sokolov
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integrable case, the Kovalevskaya-Yehia integrable case), it was possible
to effectively implement the program of building a topological atlas
12], [3], [4]. The report also presents some results of constructing a
topological atlas of an integrable system with three degrees of freedom
on the co-algebra e(3,2)", which describes the dynamics of a generalized
two-field gyrostat (the case of Sokolov-Tsyganov integrability) [5]. This
is one of the most common cases of gyrostat integrability in a double
field with conditions of the Kovalevskaya and gyroscopic forces with a
non-constant gyroscopic moment. In general, it was not possible even
to write out additional integrals in the foreseeable form [6]. To date,
about 150 equipped isoenergetic diagrams of the full momentum map
with indication of all cameras, families of regular 3-dimensional tori and
their 4-dimensional bifurcations have been determined.

The authors were supported by the Russian Foundation for Basic Research
(projects no. 16-01-00170, 16-01-00809 and 17-01-00846).
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THE GALERKIN METHOD IN THE PROBLEM OF
INHOMOGENEOUS EQUILIBRIUM STATES FOR ONE
OF THE BOUNDARY VALUE PROBLEMS OF THE
KURAMOTO-SIVASHINSKY EQUATION

Sekatskaya A.V.

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
alinastart@mail.ru

In the work the Kuramoto-Sivashinsky equation
ou oMu  O%u ou\”
- (5) ()

ot Ozt 02
with homogeneous Neumann boundary conditions
Uz (t,0) = up(t, ) = Ugea(t,0) = Upge(t, ) =0, (2)

where b € R, u =wu(t,z), t <0, x € [0, 7] is considered. In this paper,
the question of the existence of equilibrium states of the second kind
on the basis of the Galerkin method was investigated. The four- and
five-term Galerkin approximation is used. For the resulting system of
differential equations

g = — (uf + 4u3 + 9uj + 16u]) , (3)

.
tip = —16us + 4bus + | = — 3uguz — Suguy | |
2 27 A0 ( 2 T 4) (4)

"dg = —81U3 + 9bU3 — 4U1U4 + 2U1U2,
Uy = —256uy + 16buy + 2u3 + 3uius,

the question of existence of equilibrium states of the second kind in the
problem (1), (2) was investigated, and the question of their stability
was studied. A partial comparison with the results of D. Armbruster,
D. Gukenheimer, F. Holmes, as well as with the results obtained on the
basis of the methods of the qualitative theory of differential equations
with infinite-dimensional phase space is made. In particular, the analysis
of equations for the coordinates of equilibrium states was obtained by
using of numerical methods and modern computer technologies that
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make it possible to obtain formulas for the coordinates of equilibrium
states.
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SEMICLASSICAL QUANTIZATION OF COMPLEX
VECTOR BUNDLES OVER SINGULAR INVARIANT
CURVES OF HAMILTONIAN SYSTEMS

Shafarevich A. 1.

Moscow State University, Moscow, Russia; shafarev@yahoo.com

Semiclassical asymptotics of eigenvalues of quantum operators can be
associated with invariant geometrical objects of corresponding classical
Hamiltonian systems. In particular, certain sequences of eigenvalues
correspond to special complex vector bundles over isotropic manifolds
(Maslov complex germs). We study eigenvalues, corresponding to singular
sets — namely, to vector bundles over singular invariant curves
(separatrices) of partially integrable Hamiltonian systems.
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INTEGRABLE DYNAMICAL SYSTEMS WITH
DISSIPATION

Shamolin M. V.

Lomonosov Moscow State University, Moscow, Russian Federation;
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We study nonconservative systems for which the usual methods of
the study, e.g., Hamiltonian systems, are inapplicable. Thus, for such
systems, we must “directly” integrate the main equation of dynamics. We
generalize previously known cases and obtain new cases of the complete
integrability in transcendental functions of the equation of dynamics of
a multi-dimensional rigid body in a nonconservative force field (see also
[1]).

We obtain a series of complete integrable nonconservative dynamical
systems with nontrivial symmetries. Moreover, in almost all cases, all
first integrals are expressed through finite combinations of elementary
functions; these first integrals are transcendental functions of their
variables. In this case, the transcendence is understood in the sense
of complex analysis, when the analytic continuation of a function into
the complex plane has essentially singular points. This fact is caused
by the existence of attracting and repelling limit sets in the system (for
example, attracting and repelling focuses) (see also [2]).

Problems examined are described by dynamical systems with so-
called variable dissipation with zero mean. The problem of the search for
complete sets of transcendental first integrals of systems with dissipation
is quite topical; a large number of works are devoted to it. Due to the
existence of nontrivial symmetry groups of such systems, we can prove
that these systems possess variable dissipation with zero mean, which
means that on the average for a period with respect to the periodic
coordinate, the dissipation in the system is equal to zero, although
in various domains of the phase space, either the energy pumping or
dissipation can occur. As applications, we study dynamical equations
of motion arising in the study of the plane and spatial dynamics of a
rigid body interacting with a medium and also a possible generalization
of the obtained methods for the study of general systems arising in the
qualitative theory of ordinary differential equations, in the theory of
dynamical systems, and also in oscillation theory.
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This activity is also devoted to general aspects of the integrability
of dynamical systems with variable dissipation. First, we propose a
descriptive characteristic of such systems. The term “variable dissipation”
refers to the possibility of alternation of its sign rather than to the value
of the dissipation coefficient (therefore, it is more reasonable to use the
term “sign-alternating”) (see also [3]).

The assertions obtained in the work for variable dissipation system
are a continuation of the Poincaré-Bendixon theory for systems on
closed two-dimensional manifolds and the topological classification of
such systems.

The problems considered in the work stimulate the development of
qualitative tools of studying, and, therefore, in a natural way, there arises
a qualitative variable dissipation system theory.

Following Poincaré, we improve some qualitative methods for finding
key trajectories, i.e., the trajectories such that the global qualitative
location of all other trajectories depends on the location and the
topological type of these trajectories. Therefore, we can naturally pass
to a complete qualitative study of the dynamical system considered
in the whole phase space. We also obtain condition for existence of
the bifurcation birth stable and unstable limit cycles for the systems
describing the body motion in a resisting medium under the streamline
flow around. We find methods for finding any closed trajectories in the
phase spaces of such systems and also present criteria for the absence
of any such trajectories. We extend the Poincaré topographical plane
system theory and the comparison system theory to the spatial case.
We study some elements of the theory of monotone vector fields on
orientable surfaces.

REFERENCES

1. Shamolin M. V. “A New Case of Integrability in the Dynamics of a
Multidimensional Solid in a Nonconservative Field under the Assumption
of Linear Damping,” Doklady Physics, 59, No. 8, 375-378 (2015).

2. Shamolin M. V. “A Multidimensional Pendulum in a Nonconservative Force
Field,” Doklady Physics, 60, No. 1, 34-38 (2015).

3. Shamolin M. V. “New Cases of Integrable Systems with Dissipation on a
Tangent Bundle of a Multidimensional Sphere,” Doklady Physics, 62, No. 5,
262-265 (2017).

78



Kongepernuyusa « Unmezpupyemvie cucmemvs u HeAUHETUHAA OUHAMUKA»

FULL SYMMETRIC TODA SYSTEM AND GEOMETRY
OF REAL BRUHAT CELLS

Sharygin G. 1.

Dept.of Mechanics and Mathematics, Moscow State University,
Leninskie Gory, 1 Moscow, Russia; sharygin@itep.ru

Schubert cells in standard flag manifolds and their generalizations
to arbitrary Lie groups, Bruhat cells, play important role in algebraic
geometry and representation theory. These cells are open dense subsets
in algebraic subvarieties in flag spaces (Schubert varieties), enumerated
by the elements of the corresponding Weyl group. Namely, the Schubert
cell X5, corresponding to w € W(gc) is equal to the B orbit of the
element [w] € Fl(gc) = G¢/B¢. Here [w] is the point in Fi(gc),
represented by the element w in the normalizer of Cartan subalgebra,
corresponding to w € W(gc). Similarly dual Schubert cell Y5,
corresponding to w is the orbit Br - [w]. Similarly, one defines real
Bruhat cells X,, and dual real Bruhat cells Y,, in real flag manifold
FI(G) = G/B* = K/Zk(bh) (where BT is the real Borel subgroup) as
the orbits of [w] with respect to B* and B~.

In complex case the structure of these cells is relatively well
understood and has been extensively studied in the last 40 years. For
example, using complex geometry and algebraic groups theory one can
show that complex Bruhat cells intersect dual cells in accordance with
Bruhat order on the corresonding Weil group: Y. XS # 0 iff w' < w
in Bruhat order. Moreover, in the latter case the intersection is always
transversal and the (complex) dimension of this variety is equal to the
difference of lengths of the corresponding Weil elements: [(w) — [(w’).

It turned out that the similar properties for real Bruhat cells, though
mutely implied by many authors, have not been accurately proved to this
moment. In my talk I shall show that the following is true:

Proposition 1 Suppose the real Lie algebra g of G is non-split (normal).
Then the intersection X, (] Yy is nonempty, iff w' < w in Bruhat order;
moreover, if it is not empty, its (real) dimension is equal to the difference

l(w) — (w).

In addition to filling the existing gap (this statement used to be
accurately proved only in the case of G = SL,(R), where it followed
from the geometric description of Schubert cells in terms of matrix
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ranks), the purpose of this talk is to demonstrate the connection of this
theory with the full symmetric Toda flow. Namely, the result follows
from the general properties of the Toda flow on real groups. In this
sense the talk paper is a continuation of the research, we began in the
papers 1, 2 and 3.

The author was supported by the program “Leading Scientifc Schools” (project
no. NSh-6399.2018.1)
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A classification of integrable non-abelian quadratic ODE systems
with two variables is given. As the main example, an integrable non-
abelian generalization of a Hamiltonian flow on an elliptic curve is
presented. A Lax pair for this non-abelian system is found.
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DYNAMICS IN NEURAL NETWORKS AND
INTEGRABLE SYSTEMS

Talalaev D.

Moscow State University, Russia; dtalalaev@yandex.ru

The report will focus on some problems of the modern theory of
artificial neural networks and their connection with integrable structures
in statistical physics. The main example of a nonlinear dynamical neural
network in this talk is the Hopfield’s multiattractor network [1,2]. I will
describe the main problems stated in the mathematical context of this
model and describe the relationship of these problems with the methods
of exactly solved models of statistical mechanics, including the Ising
model. The exposition is based on works [3,4].

The authors were supported by the Russian Foundation for Basic Research
(project no. 17-01-00366).
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ON UNIVERSAL SPACE OF PARAMETERS FOR
COMPACT TORUS ACTIONS ON GRASSMANNIANS

Timofeeva N. V.
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The complex Grassmann variety G(k,n) of k-dimensional vector
subspaces of n-dimensional complex vector space C" is acted upon by
algebraic n-torus (C*)" as

(a1, an) * (21,00, 2n) = (121, -, Qzy)
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for any (a,...,q,) € (C*)". Also there is a compact torus subgroup
T < (CH", T" = {(a1,...,ap) € (C)'|oy| =1, i =14,...,n} and
its canonical action which is induced by its inclusion as a subgroup.

There is a moment map for G(k,n) whose image is a hypersimplex
A(k,n). This is a map u : G(k,n) — R" defined by the formula

IR
SRIZILE

where P7 is Pliicker coordinate, L € G(k,n), J runs over k-element
subsets in {1,...,n} and §; € R" is given by (d;); = 1 for i € J while
(05); = 0 for i ¢ J. The moment map is equivariant under the action of
the compact torus T".

In particular, in the case k = 1 we have G(1,n) = P"! which is
a toric variety and A(1,n) is a simplex. For k& > 2 the combinatorics
of the polytope A(k,n) does not determine the structure of the orbit
space G(k,n)/T".

Pliicker embedding Pl : G(k,n) < P(A"C") induces
(C*)™-invariant subdivision for G(k,n) by strata W, where o is the
collection of Pliicker coordinates which vanish along W, and others
do not. Empty set ¢ = () marks main stratum W = Wj. The union
U, Ws/T" gives the subdivision of the orbit space G(k,n)/T". The
stratification by W, coincides with stratifications introduced by different
methods by Gel'fand and Serganova, MacPherson and Goreski. The

n(L)

image of the moment map restricted to W, is the interior P, of the
admissible polytope P,. P, is the convex hull of some subset of vertices
of A(k,n). In [1] authors prove that all points from W, have equal
stabilizers. The orbit space F, = W, /(C*)" is an algebraic variety which
is called the space of parameters for W,. A point from the orbit space
G(k,n)/T" is determined by two coordinates: one from P, and another
from F. Also there is a subtorus 779 < T" acting freely upon W, and
such that dim 77 = dim P,.

Let E be the disjoint union £ = | | (P, xF;). Canonical projections

W, =P, and W, — F, define the homeomorphism W, ~P, xF, |1,
Theorem 4] and the bijection E = G(k,n)/T". The key problem is to
introduce the appropriate topology on E such that this bijection become
a homeomorphism. In order to do it Buchstaber and Terzi¢ introduce
new notions: the universal space of parameters F which is an algebraic
variety compactifying space of parameters F' of the main stratum, and,
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for each admissible set o, the virtual space of parameters 150~such that
there is an embedding F, C F and the projection p, : F, — F,.
Also they introduce the set C'(A) which is formal union of admissible
polytopes P,. This set is equipped with the topology induced by the
demand for the moment map G(k,n) — A(k,n) to factor through
C'(A), i.e. by the decomposition G(k,n)/T" — C(A) = A(k,n).

The set £ defined as the union £ = |J_ (P, x F,) inherits topology
from its canonical embedding into the space C'(A) x F. The surjective
map & — E induces topology on E such that the orbit space G(2,n)/T"
is homeomorphic to F with this topology |1, Theorem 1].

In [2] it is proven directly that the universal space of parameters
for T* on G(2,4) coincides with its space of parameters |J_ F,. It is
homeomorphic to CP'. In [1| the universal space of parameters is
obtained by means of direct computations for G(2,5) and the authors
proved its homeomorphicity to the smooth algebraic surface obtained
from CP? by blowing up its four points. In both cases F is homeomorphic
to the Chow quotient of the corresponding Grassmannian by algebraic
torus.

M. M. Kapranov in his seminal paper [3] studied Chow quotients of
complex Grassmannians G(2,n) under (C*)" from different points of
view.

V.M. Buchstaber posed a problem: prove that universal space of
parameters of compact torus 7" on G(2,n) is homeomorphic to Chow
quotient G(2,n)//(C*)™.

I will speak about the proof for general n.

The work was carried out within the framework of the State Programme of the

Ministry of Education and Science of Russian Federation, project
no. 1.12873.2018/12.1
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DECOMPOSITIONS OF SURFACES FLOWS AND THEIR
APPLICATIONS

Tomoo Yokoyama
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In this talk, we describe properties of surface flows of finite type.
First, we describe properties of “border points” of a flow without
degenerate singular points on a compact surface. In particular, we show
that each connected component of the complement of the “saddle
connection diagram” is either an open disk, an open annulus, a torus, a
Klein bottle, an open Mobius band, or an open essential subset. Second,
we introduce a complete invariant for surface flows of “finite type”. In
fact, although the set of topological equivalence classes of minimal flows
(resp. Denjoy flows) on a torus is uncountable, we enumerate the set
of topological equivalence classes of flows with at most finitely many
limit cycles but without Q-sets and non-degenerate singular points on
a compact surface using three finite labelled graphs. The class of such
surface flows contains both the class of Morse Smale flows (resp. area-
preserving flows with finite singular points). Third, if time allows, we
introduce a generalization of the Poincare-Bendixson theorem for a flow
with arbitrarily many singular points on a compact surface. In fact, the
w-limit set of any non-closed orbit is either a nowhere dense subset of
singular points, a limit cycle, a limit “quasi-circuit”, a locally dense Q-set,
or a “quasi-Q-set”.
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ON A QUANTUM HEAVY PARTICLE

Treschev D. V.

Steklov Mathematical Institute, Moscow, Russia; treschev@mi.ras.ru

We consider Schrodinger equation for a particle on a flat torus in
a bounded potential, depending on time. Mass of the particle equals
1/p2, where p is a small parameter. We show that H!-norm of the wave
function grows approximately linearly on the time interval ¢ € [0,¢,],
where t, is slightly less than O(1/p).

CRITERION OF COMPONENT-WISE STABILITY OF
2N-DIMENSIONAL SADDLE SINGULARITIES IN
INTEGRABLE HAMILTONIAN SYSTEMS

Tuzhilin M. A.

Lomonosov Moscow State University, Moscow, Russia;
mtul9930mail.ru

Let we have an integrable Hamiltonian system with n degrees of
freedom. The system is defined by n independent integrals in involution
on 2n-dimensional symplectic manifold (M?**,w). The map M?" — R"
given by the integrals is called the momentum map. The momentum
map generate a foliation on a neighbourhood of a singular value so-called
2n-dimensional singularity. Consider the singularity of a zero rank.

In the 4-dimensional case there is the Fomenko hypothesis that says
if all singular points of the momentum map are non-degenerate then the
foliation of the singularity is completely defined by the foliation of the
singularity boundary up to Liouville equivalence. If the singular value
has non-saddle type then the hypothesis is true, but if the type is saddle
then it is not, see [2] and [3].

Consider the case of a saddle 2n-dimensional singularity. The Zung
theorem says that any non-splitting by Zung saddle singularity can be
represented by a factor of a direct product of n 2-dimensional atoms
divided by a finite group so-called almost direct product. The main
problem we set is to find when this singularity is stable or non-stable. It
turns out that the group action on singular zero-rank (Morse) points

85



Conference “Integrable Systems and Nonlinear Dynamics”

of each 2-atom defines the stability of almost direct product in the
component-wise case. In this report we will give definitions of splitting
in this case and introduce the criteria of component-wise stability.

This report requires some knowledge of the atoms and molecules
theory, see [1], and the Zung theorem [4].
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THE TOPOLOGY OF THE LIOUVILLE FOLIATION OF
THE ISOENERGY SURFACE OF THE SIMPLE
BILLIARD BOOK

Vediushkina V. V.

MSU, Moscow, Russian Federation; arinir@yandex.ru

Consider a part of the plane bounded by arcs of confocal quadrics.
We integrate such a billiard. The straight lines containing the segments
of the polygonal billiard trajectory are tangent to a certain quadric
(ellipse or hyperbola). This quadric belongs to the same class of confocal
quadrics as the quadrics whose arcs form the boundary of the domain
(billiard). Such billiard we call elementary billiard.

Let fix the elementary billiard 2 and a number n € N. To each
arc of the boundary €2, which is a connected part of the quadric, we
assign an arbitrary permutation o of order n in the following way.
We require that, first, only the identical permutations are assigned to
nonconvex arcs of the boundary. Secondly, in each corner of the billiard,
the commuting permutations are ascribed to the arcs of the boundary
forming it. Consider a disjoint union of n elementary billiards (leaves)
Q;,i € {1.n}. We make from these sheets the CW-complex as follows.

Consider the arc [ of the €2 billiard boundary and the permutation
o assigned to it. We expand o into a product of independent cycles. We
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identify isometrically the arcs [ of billiards €;, if their numbers ¢ lie in
the same cycle of the permutation . The identified arcs will be called
spine.

The resulting CW-complex B will be called billiard book (or briefly
book). Generally speaking, the book B may be disconnected. We confine
ourselves to such sets of permutations ¢ on the boundaries €2, so that
the book B is connected.

Billiard motion on the book B is defined as follows. Within each
(); sheet, the motion is rectilinear, and when it hits the boundary, a
reflection occurs at which the point continues to move along the sheet
o (i), where o is the permutation assigned to this edge arc. Upon entering
the corner, the point continues to move along the sheet (o o 09)(7),
where o1 and o9 are commuting permutations assigned to the sides of
this angle.

o=(12...n)

Theorem. Let By be an elementary billiard which has an empty
intersection with the focal line and bounded by two arcs of hyperbolas
(convex and nonconvex) and two arcs of ellipses. We consider aB billiard
book, glued together from n billiard instances By,, and a permutation
o= (12..n), ais given on the convex hyperbolic root of the book on
a convex elliptic spine - permutation o*. Permutations corresponding
to non-convex arcs of billiard By are identical. Then the Fomenko-
Zieschang invariant classifying the Liouville foliation of the constant-
energy surface Q® for a given billiard book has the form A — A, where
the label r = %, e=1.

REMARK. We note that in this case the isoenergy surface Q? is
homeomorphic to the lens space L(n, k).

The author was supported by the program “Leading Scientific Schools” (grant
no. NSh-6399.2018.1).
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ABOUT ONE MATHEMATICAL MODEL IN ROTARY
SYSTEM MECHANICS

Zapov A.S.

Yaroslavl State Unwversity, Yaroslavl, Russia;
yar.promo.zapov.algmail.com

In this paper we consider a following nonlinear boundary value
problem
Ugt + (glut + g2ut,xzxx) + (1 - ZUJ)U/zxxz = F, (1)

u(t,0) = u(t, 1) = ugp(t,0) = uz,(t,1) = 0,2 € [0, 1], (2)

where u = uy(t, z) + ius(t, z) is a complex-valued function. In this
case we can choose a nonlinear function F' [4-6] in the following form:

1 1
d
F (g, Uy, Uty :um(al/ |ux\2dsc+a2—/ \ux|2dx).
0 dt Jg

Finally, ¢1,g0,w,a; and ay are some positive (non-negative in
particular cases of setting targets of this problem) constants. The result
parameter w is a normalized shaft rotation speed (|1-3]). The boundary-
value problem (1), (2) arises in rotary system mechanics and describes
the transverse vibrations of rotating rotor of a constant cross-section
from a viscoelastic material whose ends are pivotally fixed. Equation
(1) is given in a renormalized form.

The linear analysis of problem (1), (2) leads to the next statement.

Theorem 1. The solution u = 0 is asymptotically stable, if w < w,
and loses stability in case w > wy. In case w = w, the critical case is
realized.
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The variable w, is positive and defined as

- g1+ ga(mn)?
Wy = MIN Wy, Wy =
(mn)?

n=123.

Also, this minimum is realized on number of m and defined as

, 1
Wi = MIN (Winy, Wing+1), Mo = entier | —¢ =] .
TV 92

Theorem 2. The boundary-value problem (1), (2) has a non-trivial
self-similar periodic solution of the form

u(t, x) = nuexp(io,t)sin(mn),
where

w(mn)?

2
My = alw% (w wn)? On = g1 + (7771)492’
if w > wy,
Solutions with the number of n (u, (¢, z)) are asymptotically stable,
if the following inequality will be correct for all natural values of k:

(1 — w—z> (mk)* + (w—2 — 1> (mn)* > 0. (3)

Wy w2
The stable condition (3) can be simplified in some particular cases.
F.e, if we consider the solution uy(t,x) and w1 < wy < ws..., then
this solution asymptotically stable at w € (wy,ws]. Stability conditions
analysis of equation (3) will be based on numerical analysis of conditions
(3) in common case (arbitrary values of n).

Finally, zeroth solution of boundary-value problem (1), (2) is always
unstable at go = 0.
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OIIEHKA MHBAPUAHTHBIX YN CJIOBBIX
ITOKAS3ATEJIEM KBABUYCTOMYNBBIX
ATTPAKTOPOB JUHAMUWUYECKINX CUCTEM C
3AITIA3IBIBAHUEM

ESTIMATION OF INVARIANT NUMERICAL
EXPONENTS FOR QUASI-STABLE ATTRACTORS OF
DYNAMICAL SYSTEMS WITH TIME DELAY

Asemmun C. B.!, T'opionos B. E.?

YAplY um. I1.T. Jlemudosa, Hpocaaesv, Poccus; HI[Y PAH,
Yeprozonoskra, Poccusa; fktiby@yandex.ru
2HITY PAH, Yeprozonosxa, Poccus; salkar@ya.ru

MuI paccMmarpuBaeM 3aj1a4y OLIEHKH IToKa3aTeseit JIsiyHoBa st cu-
creM JuddepeHnnaabHbIX YpaBHEHNUI ¢ 3amnas3piBanueM. Teopema Oce-
Jiesienia, Mo3BoJIsdoas 3pMEKTUBHO BHIUNCIATH IoKa3aTean JIgamyHosa
B KOHEYHOMEPHOM CJjIydae, Korja JIMTHeapu30BaHHAs Ha aTTPaKTOpe CHU-
creMa OOBIKHOBEHHBIX JnddepeHnuaibHbIX YpaBHeHI Beeria siBjsieT-
¢ IpaBWIbHOI 110 JISIIyHOBY, M, T€M caMbIM, BEPXHUII IIpe/Iesl MOXKeT
OBITH 3aMeHEeH Ha OOBLIYHBIN, JIJII TAKUX CHCTEM, BOOOIIE I'OBOpsi, HE pa-
ooraer. Tem He MeHee, C IOMOIIBIO CIEMUAIBHBIX METOJIOB yIaeTCsl Bbl-
YUC/ISATh MHBaAPUAHTHBIE XapaKTEPUCTUKU, KAYeCTBEHHO OJIM3KNE K HC-
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KoMmbIM. [Ipejtaraercsa HoBast peasim3aliiisi pa3pabOTaHHOIO paHee ajiro-
PUTMAa C UCIIOJIB30BAHIEM JIMCKPETHOro 1peodbpazoBanust Pypbe u 3aja-
HUsT 0COOBIX HaYaJIbHBIX YCJIOBUIL JIJI JTMHEAPU30BaAHHBIX HA aTTPaAKTOPE
JANHAMUYECKUX CUCTEM.

st meoro psijia, Mojeseil TeHHBIX ceTeil 1 HelpOHHBIX accollia-
Ui, uccjieyeMbIX B IOC/Ie/IHee BpeMs, ABJIdeTCd XapaKTepPHbIM TaK Ha-
3bIBaEMOE KBa3MycToiunBoe mopejienne. PenomMen KBa3MyCTONINBOCTU
[UKJIa (k—MepHoro Topa) JUHAMUYECKON CUCTEMbl 3aKJII0YaeTCA B TOM,
YTO YacTh €ro MYJIbTUIINKATOPOB aCHMIITOTHYECKN OJIN3Ka K eIMHNY-
HOIl OKPYZKHOCTH, & OCTAJIbHbIC MYJIbTUILIMKATOPLI 10 MOIYJIIO0 MEHb-
e e MHUIbI (3a UCKJIIOYCHUEM IIPOCTOr0 JIUHUIHOTO (k: e;LHHHqulx)).
B HekoTOpBIX ciydasix ¢ IpUMEHEHHEM METOJIOB OOJIbIIIOro IapaMeT-
pa yaaercd JIoKa3aTh CYIleCTBOBAHNE U JIATh aCUMIITOTUYCCKYIO OI[CHKY
MYJIBTUILIMKATOPOB HccieayeMoil cucreMbl. OHAKO B C/ydae, eciu Me-
TOJBI OOJIBIIIOrO TapaMeTpa HEeIPUMEHUMbI, HeOOXOUMO TOJIYIUThH NH-
CTPYMEHT YHCJICHHOI OIEHKN MYJIBTUILINKATOPOB. TakKoil MHCTPYyMEHT
JlaloT aJIPOPUTMbI OIEHKN IokaszaTeseil JIsamynoBa. YUuTbIBasg, 4TO B
MOJIeJIAX HEHPOHHDBIX U M'eHHBIX CeTeil YaCTO MPUMEHAI0TCH YPaBHEeHNd C
3alla3/IbIBAaHNEM, aJITOPUTM OIEHKN ToKazaTeseil JIamynoBa a1 Takmx
cucreM OyJeT MNUPOKO BOCTPeOOBAH.

Pabotra BeIiostHeHA TP (DPUHAHCOBOI MOIEPKKe rpaHTa PoccnitcKoro HayIHOIO
dborma (Ne 14-21-00158).

JINTEPATYPA

1. Asrermma C. B. OneHKa MHBaPUAHTHBIX YHCJIOBBIX MTOKa3aTe el aTTpakTOPOB
cucreM uddepeHnuaabHbIX ypaBHeHuil ¢ 3amas3/piBanneM |/ Boraucanresb-
HbI€ TEXHOJIOTMHU B €CTECTBEHHBIX HAyKaX: METO/IbI CyIIEPKOMIIBIOTEPHOI'O MO-
nenuposanus. 1-3 okr. 2014, Poccust, Tapyca: ¢6. tp. / [log pexn. P.P. Hasu-
posa, JI.H. Ilypa. M.: UK PAH, 2014. C. 10-17.

2. Ocenenerr B. . MynbTuiimKaTuBHasT SPTOMIecKas TeopeMa. XapaKTepu-
crudeckue nokazarenn Jlgnyrosa guHamndeckux cucreM // Tpyasr Mock.

mareMm. 0o0-Ba. 1968. T. 19. C. 197-231.
3. Impizun /1. C., I'meizun C. /1., Koxecos A. FO., Pozos H. X. Meron nunamu-

9eCcKOl MePeHOPMHUPOBKHN JIJISI HAXOXKJIEHUST MAKCHUMAJIBHOTO JISIITYHOBCKOT'O
nokasaresis XaoTu4deckoro arrpakropa // JIuddepennuaibibe ypaBHeHUS.
2005. T. 41, Ne 2. C. 268-273.

91



Conference “Integrable Systems and Nonlinear Dynamics”

MOIEJIb CAJIBTATOPHOT'O ITPOBEJIEHUY
ITOCJIEJOBATEJIBHOCTU NMITYJIBCOB HA OCHOBE
MOINPUITNPOBAHHOT'O NMITYJIBCHOT' O
HENPOHA

THE SALTATORY CONDUCTION OF A PULSE
SEQUENCE MODEL BASED ON THE MODIFIED PULSE
NEURON

Anydpuenko C.E.!, Bopucos A. A.?

YsIpocaasckuti 2ocydapemeennmti ynusepcumem um. 11T Jemudosa,
2. Apocaasav, Poccus; sanufrienko@rambler.ru

2 SIpocaaeckuti 2ocydapemeennuiti ynusepcumem um. 11T Jemudosa,
2. fpocrasnn, Poccus; borisov.alex@yandex.ru

Ha ocrose muorounciennsix nccenosannii [1],[2] B.B. Maitopobim
OBl IPeJIOYKEeHa MOJIeJb IPOBEJICHNUS NMITY/THCOB 110 MUEJIMHI3UPOBAH-
HBIM BOJIOKHAM, OCHOBAHHAsST HA pa3pabOTAHHOIN M YK€ MOJIE/TH UMITYJTbC-
Horo Hefipona [3]. B pammoit paboTe ncmnob3yoTes MoAndHUIImpPOBAHHbIE
MOJIEJT UMITYJTbCHBIX HEHPOHOB KaK IIOPOTOBOTO, Tak M aBTONEeHEPATOPA.

YpaBHEeHNE, OMUCHIBAIONIEEe MEMOPAHHBI TTOTEHINAT MOAUMUIITPO-
BAHHOT'O [IOPOrOBOIO HEPOHA MMeeT BII;

= A(a = fya(w) fa(ult = 1)) = 1+ fre(u(t = 1)Ju+ e filu(t - 1)).

3mecb A > 1 orobpaxkaeT OOJIBIIYIO CKOPOCTH PaCIIPOCTPAHEHMS
9JIEKTPOXIMIIECKIX MporeccoB, 0 < € < 1 - mapameTp, OIICHIBAIOIINI
TOKH yTeUKIH.

Oyuxmuu fr, (u), [, (w(t — 1)), fx(u(t — 1)), fi(u) onuceBator co-
CTOSIHIE KAHAJIOB HOHOB HATPUS, KAJIHsI I TOKOB YTEUKN COOTBETCTBEHHO.
OHE JIOCTATOYHO TVIAJIKHE, TTOJOKUTEIbHDIE.

Jrra(w), fr, (u(t — 1)), fir(u(t — 1)) upu u — 00 cTpemsiTCa K HyJIO
obictpee, uem O(u™'). f%,(0) = 1.
fi(u) npu u — oo crpemurest K HyJ1o obictpee, uem O(u~2).  f;(0) = 1.

Mojiesb HeffpoHa-aBTOreHEPATOPA BBITVISIAT CJIEIYIONIM 00pa3oM:

= N(a = fyu(w)fya(ult = 1)) = 1+ fi(u(t — 1))]u.

Ceoiicrsa dbyuxiuit fip,(u), fao (u(t—1)), fe-(u(t —1)) ananoruannr
CBOIICTBaAM COOTBETCTBYIOIMINX (PYHKITUI JIJIsI TTIOPOI'OBOIO HEHPOHA.
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Cucrema, ONMUCHIBAIOIIAS IIPOIECC PACIIPOCTPAHEHNUST TIOCIEI0BATE b
HOCTHU UMITYJIbCOB 110 aKCOHY MMeeT BUJI:

g = A[(a— fan(u0)) faa(uo(t—1)) = 1+ f (uo(t—1))]ug+e 7 (v1 —up),

(1)
i = N(a = frg(ui)) foa(uit = 1)) = 1+ fre(wi(t — 1))]u; +
+€fl(ui(t — 1)) + 6_)\0(1)1' — 2u; + Uprl), (2)
1=1,....,N —1;

un = Al(a@ — fya(un)) fa(un(t = 1)) = 1+ fre(un(t = 1)]ux +
+8fg(uN(t — 1)) + 67)\0(1)]\[ — UN), (3)

UZ:A(Ul_l—Q’UZ—l—UZ), Z:1,,N (4)

Brejiem nmapaMeTphl:

o =a— fy,(0) = 1 — fr(0) >0,
ol = fr(0)—1>1,
o= fha(0) —a— fx(0) +1>0,
a; = fg(0) —1>1,
O0<o<ao.

[TpuMensist METO/I MOMIATOBOIO ACUMIITOTHYECKOIO HHTEIPUPOBAHMUST
ypasaennit (1)—(4) mpu crenuajbHbIX HAYATBHBIX YCIOBHUAX, MTOJIYINM
dopmyiibl, 3ajaro01e MeMOPaHHBII ITOTEHINA HYJIEBOIO IIepexBara;

ot (t+o1)) npu t € [,1— 0],
up(t) = eAMad—(t=1)+o(1) mpu t € [1+6,2+a) -4, (5)
M lt=ai=2)=14oD) 1y ¢ e 2+al+6,T -4

[Torennman memMOpaHbl IepBOTO MepexBaTa PanBbe 3a1aeTcs (popmy-
JIAMIL:

et (t=r+o(1) npu t € [r+6,1+717—9],
w(t) = eMar==r=Uol) ppp t e [147+6,24+7+aq — 4], (6)
e+o(1)

upu t>24 74+ oy +9.
A
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[Torennua MeMOpaHbI IEPBOI0 MUEJIMTHI3UPOBAHHOTO CJI0sT 38/1a€TCsT
dopmyiamu:

( e)\a(l)(t+0(1)) pu [5 1-— 5]
Met=(=1+o) e [146,t — 6],
o (t) iy e)\a1(t—7'+0(1)) npu [ —+ (5 1+7— 5] (7)
No=(=r=Uo) oy te [14+746,247+a; — 4],
1
\%Z() upu t>24+ 74+ oy + 9.
311ech
1
T:£_|_O(1) <1, t,=1+ ar , T:2—|—oz(1)—i——.
o%] ap +1 o

Dopmyitbt (5)—(7) OMUCBIBAIOT COCTOSIHIE [IEPBOTO TIEPEXBATA, U Ep-
BOI'0 MUEJIMHU3UPOBAHHOTO CJIOS /IO HOBOT'O CIIafiKa HYJIEBOT'O HelpoHa.
[Torennumasisl MeMOpaH MEpexBaToOB 1 MUCINHU3HPOBAHHBIX CJIOEB € HO-
MEpPOM 1 33J1af0TCst (DOPMYJIAMU:

wi(t) =u(t—(—1)7) mpu t> (@G —1)r,i=2,...,N (8)
vi(t)=vn(t—>G—1)7) mpu t>@GE—1)r,i=2,...,N

IIpu ¢t = T" myneBoil mepexBaT renepupyeT HOBBIN craiik. [lo mepe-
XBaTaM HauHeT PaclpoCTPAHATHLCA HOBas BOJTHA UMITYJILCOB B HaIlpaBJIe-
HUM Bo3pacTaHusi X HomMepoB. [loTeHnnasbl MmemOpaH epexBaToB PaH-
BbE 11 MUCJIMHU3NPOBAHHBIX CJI0€B 3ajaeTrcs hopmystamu (5)—(8) co capu-
I'OM 110 BpeMeHM Ha BejuduHy 1. DToT mporecc OyJAeT HOBTOPSIThCs C
IePUOAUIHOCTBIO 1.

JINTEPATYPA

1. Tacaku W. HepsHoe Bo30yxKaerue. M. : Mup, 1971. 222 c.
2. lage /., @opa . Ocuossr Heposoruu. M. : Mup, 1976. 352 c.

3. Kamenko C. A., Maiiopos B. B. Mogenu BomnoBoit mamsaru. M. : KHuKHBII
nom "JIMBPOKOM". 2009. 288 c.

94



Kongepernuyusa « Unmezpupyemvie cucmemvs u HeAUHETUHAA OUHAMUKA»

METO/ ITPEOBPA3SOBAHUNYA ®YPBHE J1JI1d
HEKOTOPEIX TUIIOB JIMHENHBIX YPABHEHUN B
HYACTHBIX ITPOMN3BOJAHBIX C IIEPEMEHHBIMU
KOSODOPUITINMEHTAMUA

FOURIER TRANSFORM METHOD FOR SOME TYPES
OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS
WITH VARIABLE COEFFICIENTS

I'mminapkaes B. I.

Yewenckut 2ocydapecmeernnvit yrusepcumem, I'posnwii, Poccus;
vakhag@mail.ru

Pabora B ocHOBHOM IOCBSIEeHa UCC/IEI0OBAHNIO 3aja4un Kormm s
ypaBHEHU BUIa

Ou(t, ) + Y €ata(t)O0ult, z) = f(t,x), (1)
la|<m
rie €, = x; wm 1. Kpome 3Toro paccMoTpeH CXeMaTHUYHO ITOJAXO B

cilydae, KOrjia BMECTO €,a4(t) B (1) crour ¢ (t, ).

Ypaaenusi Tuia (1) BCTpedaroTcst BO MHOIUX MPUKJIATHBIX BOIIPO-
cax: M dy3MOHHBIX TPOIECCcax MPpU HAJMINH CHOCA B KAKOM-TO HATIPAB-
JIEHWH, TP OTUCAHUN POCTA, TOMYJIANNN, B PA3INIHBIX CJIyIasgx TeOPUN
TEIIO-U-MacCOOOMEHA, ¢ TeIJIOBBIICTCHHEeM W JIPYTUMI JIOTOJTHUTE -
HBIMHI ycstoBusamu (M., Hampumep, [1]). Ocrosoit mist narmero amnaimsa
paccMaTpuBaeMbIX 3a/1ad CIyKUT 1mpeodbpazoBanne Oypre. Moanduka-
IS CTAHJAAPTHOIO METO/[a IIpUMeHeHust TpeobpazoBannsg Pypbe uier B
JIBYX HAIPABJICHUSIX:

1. Ucnosp3oBanue ujen, MojcKa3aHHON cXeMOil BbIBOJA ypPaBHEHUsI
Xora n3 craTuCTUIeKoil MeXaHUKHU, ONNCHIBAIOIIEr0 JNHAMUKY
XapaKTepUCTUIeCKOro (pyHKIIMOHAJA PacIpejie/IeHsl CKOPOCTei
JIBI2KEHHUsT XKIUJKOCTH. A IMEHHO, CTABUTCSI BOIIPOC, JIJIsT KAKNX TH-
II0B ypaBHEHUI B YaCTHBLIX IIPOM3BOJIHBIX pelleHus 3aaadn Ko
MOKHO IIPEJICTABUTL B BHje IpeodbpazoBannst ypbe oT pacipe-
JleJIEHNS CABUATA HAYAJIBHOIO YCJIOBHUSI 110 TPAEKTOPUSIM KAKOT'O-TO
O0OBIKHOBEHHOI'O Jud hepeHInaaIbHOr0 ypaBHeHsI, 3aBUCSIIET0 OT
HCXOJIHOIO, WJIM CHUCTEeMbl TAKUX YpPaBHEHUII IIPU 3aJIaHHOM pac-
peJie/IeHN HadaJIbHOT'O YCJIOBHSI. DTOT IIOJXOJ OCYIIECTBJIEH B

12].
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2. Ilpumennm k (1) obparroe mpeodbpazoBatne Pypbe x — €. Vuu-
ThiBasg, uto FH(z0%u(t, z)) = 410 (€%u(t, £)), nomyunmm kom-
miekcHoe jinddepeHnuaibHoe ypaBHeHne 1-ro mopsijiKa uin, 9to
9KBUBAJIEHTHO, CUCTEMY W3 JIBYX ypaBHeHUI 1-ro mopsjika, KOTo-
PYI0 MOYKHO PEIIUTh METOJIOM XapaKTepucTuk. B ciydae, Korja B
(1) €qaq(t) cTouT Py (t, ), TO MOCITE B3ATHST OOPATHOTO TPEOOPA30-
sarusg Oypoe ot (1), moayaum naTerpo-quddepeHuaibLHoe ypas-
HEHUe, B KOTOpoM JnddpepeHnupoBanne IPOBOJINTCA 10 BPEMEH-
HOI IepeMeHHOil, a NHTerpUPOBaHIe — TOJIHKO MO MPOCTPAHCTBEH-
HBIM ITepeMeHHbIM. TakuM 00pa30oM, MOoJIyUIeHHOe YpaBHEHHE I10/I-
naJ1aeT 0] TEOPUIO OOBIKHOBEHHBIX JuddpepeHnnaabHbIX YpaBHe-
HIIT B 0AHAXOBOM IIPOCTPAHCTBE.

OTMeTnM TaKzKe, UTO JIJIsl BBIBOJIA TEOPEM CYLIEeCTBOBAHUS 1 €JI11H-
CTBEHHOCTH PeIleHuil paccMaTpUBaeMbIX 3a/ad HEOOXOIUMO CJe-
JIATh yJIadHbIfl BBHIOOP IPOCTPAHCTBA HAYAJbHBIX JAHHBIX U IIPO-
CTPAHCTBA PEIICHN, YINTHIBAIOIIX CIEIU(UKY ONMCAHHBIX BhI-
e 1noaxoaoB. Beibop ux ompejenserca Teopemoii [1sm-Bunepa-
[ITBapia o npeodpazoBanun Pypbe 000OIIEHHBIX (DYHKIINI ¢ KOM-
HAKTHBIM HOCHTEJIEM.

Ccbopmysnpyem Terepb HEKOTOPbIE pe3yJibTaThl. BBejieM mpocrpa-
cTBO HadanbHLX Jannbix: CA(R") = {®|g. : (& : C" — C nenas
dynknug : ((Im®(x) = 0,Ve € R") A (Je,m,r € R |D(2)] <
c(1 + ||z||cn)merm=llny 2 € C™)))} u npocrpancTso permenmi:
Cr(R") = {@]jo e (@(,) € CH(0,T)Vr € R") A () -
C" — C — nenag bynkmnus : ((Im® (¢, x) = 0V(t,z) € [0,T] X
RA(Fe,m, z € R |®(2)| < c(14]|2]|cn)mermmalV{E:2)€0TIXE )
JIJist KpaTKOCTH OIpaHUYMMCs cjiydyaeM n = 1, B o0IIeM cirydae
dbopmyinposku anasormansl. Yepes C4, (C%A obosmaumn CA(RY),

1,A
C;7(RY), coorsercrsento.

N 1,4
Teopema 1. Haiinerca T' > 0 rakoe, uto B npocrpancrse C;= cy-
[[ecTBYeT eIMHCTBEHHOE DEIIeHHUE 3aJa4H.

Ouult, x)+x Y a0 u =0, (t,z) € (0,T)xR, ul—o = ug € C*.
k=0

[Tonydennl popMysIbl, ITpeACTaBIsIONINE pelieHns 3ajgadun Ko c

96



Kongepernuyusa « Unmezpupyemvie cucmemvs u HeAUHETUHAA OUHAMUKA»

Ha4daJIbHBIMHM JaHHBIMU N3 (CA JJI ypaBHeHI/Iﬁi

Oru(t, x) + :UZ ar(t)0%u = 0;

k=0
Oru(t, x) + Z ar(t)0F (zu) = 0;
k=0
Owu(t,z) + Z 8Zu+Zb u:O;
k=0
Owu(t, ) — I(— éZak 8]“” 1u+x2ak 8ku—0
k=0 k=0
O = f(t)(=1)20ku — U(=1)2f(£) Y ar()OE " u— 2y ax(t)d
k=0 k=0
N l
O = Z Fr (1)l — a(t) S l(—1) % filt)ar " — wa(t) 9 u;
k=1
Oru(t, x) + Z bor (1) 0,0%%u(t, ) + Z aor (1) 0% u(t, x) +
k=0 k=0
Zxa2k+1(t)8§k+1u(t, x) = f(t,z);
k=0

Owu(t, z) + xa(t)(Pu)(t,z) = 0,

rie (Pu)(t,z) = % fRy (ng ei(y_m)fgb(f)dﬁ) u(t, y)dy — ncesnomudde-

PEHINAJIBHBIN OllepaTop.
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JIOKAJIBHBIE BBICTPO OCHUJIJIMPYIOIIINE
PEIITEHNA B SAJAYE O JNCJIOKAIINAX

LOCAL RAPIDLY OSCILLATING SOLUTIONS OF THE
DISLOCATION PROBLEM

Tnezun C. 1.!, Kamenko C. A.2, Ton6eit A. 0.3

YsIpocaasckuti 2ocydapemeennmti ynusepcumem um. 11T Jemudosa,
2. Hpocrasanv, Poccusa; glyzin@uniyar.ac.ru
2 SIpocaasckuti 2ocydapemeennuiti ynusepcumem um. 11T Jemudosa,
2. HApocaasav, Poccus,
Hauuonarvruti uccaedosamenveruti adeprolll yHusepcumem
«<MHUDI», 2. Mockea, Poccus; kasch@uniyar.ac.ru
3 SIpocaasexuti 2ocydapemeenmnuti ynusepcumem um. 111 Jemudosa,
2. HApocaasan, Poccus; a.tolbey@uniyar.ac.ru

PaccmarpuBaercst crapiiee KjaccuiecKnM HeJmHeiiHoe auddepen-
ajJbHOE ypaBHEHNE ¢ OTKJIOHEHUSIMU ITPOCTPaHCTBEHHOI ITepEeMEHHOI],
HasbIBaeMoe 3ajiadeil o JucaoKaImsx |1]

d*y; . (2T, |

dt2 :E+l7i_ﬂ,i—l_f081n< a )7 (Z:]‘7"'7N) <1>
B ciydae

Frri = YWir1 — vi) + i1 — 4i)* + Byis — vi)°. (2)

Nsyuatorcss ObICTPO OCHUJLINPYIOIIUe perienns (CM. Takxke |2|), Bo3Hu-
kaformme B Mozenn (1), (2), rae Bmecto dbyHknm siny B mpasoif va-
ctu (1) BoIOpano Gosee obmiee Boipazkenue ay(t, ) + by?(t, ), npudem
IpeJoslaraeTcs, 4To a = —ag + £2ay, ag > 0, fo, @,y — NOJ0KUTEb-
uble Koabburmentor, y;(t) = y(t, x;) U PACCTOSTHUS MEXKJLy COCEJIHI-
MI TOYKaMU Z; paBHbI h, Kak 1 B 3ajade Pepmu-Ilacra-Ymama [2], [3].
Cuuraercsi, 9T0 3HAYEHUsI T; PACIPEJIEIEHbI HA OTpe3Ke JInHbI 27 L u
BBITIOJTHEHO yCsIoBHe nepuognanoctn y(t, z; + 2w L) = y(t, x;). CoorHo-

MmeHne T, = ; + €, e € = hL™!, nmosydaercs mocsie HOPMHPOBKH
IIPOCTPAHCTBEHHOI 1epementoil x : x — Lx. Jlajee, nopMmupys Bpems

t — (km~1)1/%t, BeimuceiBacM KpaeByro 3a1auy

d2
d_tg?/ =y(t,x+¢e)—2y(t,x) +y(t,z —e) + a(y2(t, r+e)—2y(t,r+e)xy(tx)+

+2y(t,2) x y(t,w =€) — P (ta =€) ) + B((y(tw +€) — y(t,2))° = (y(t,2)—
—y(t,x — 5))3) +ay(t,z) + by’ (t, x),

(3)
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y(t,x +2m) = y(t, x). (4)

B nokiaje npejiaraercst paccMOTPETh BOIPOC O HEPEryIapHBLIX Pe-
mennsx (3), (4), bopMupyOMUXCs Ha ACUMITOTHYECKH BBICOKUX (TIpH
e — 0) Mojax.

DukcupyeM MpousBoJIbHO napamerp 0 # wn (n = 0,+1,+2,...)
u OyjeM uccienoBath perenns (3), (4), dopmupyroruecs Ha MoJax ¢
HOMEpaMu

k=4(20e"' 4+ 0+m). (5)

3nech 0 = 0(e) € [0,1) pononusier npeapiayiee B (5) ciaraemoe J0 Tie-
JIOTO, a
m = 0,+1,£2, ... IIpu takux HOMepax k jjis Kopaeit A = A\, B (D)
1MeeM IPeJICTaBICHIe

A = T [7(6) (1 + =0 J;ZZ)(?)H(%)) + 0(52)] (6)

Bgejiem B pacemoTrpenne (popMaJIbHBIH sty

Y= 5( f Em(T) exp <z(2§ + 60+ m)x + iv(é)(l + (0 ;gg;;n 20 0(52)>t)+
¢ 35 e (o)=L ) )

+elyy (T, t, ) +e>ys(T, 2, 1) +. ..

3iech T = £2t, yepe3 €€ 0603HAUAIOTCS CJIAracMble, KOMILIEKCHO COIIpSI-
JKCHHBIC K
COZIepZKAIIIMCSI B TOI 7Ke CKOOKe, a 1; — IMEePUOJNIECKN 3aBUCAT OT X
u or t. Obo3HaunM

Z Em(T) expima), n Z nm(T) exp(ima).

m=—0oo m=—0oo

[ToncranoBka (7) B (3) Ha KaxKJOM Iare ajropuT™Ma JaeT COOTBET-
cTByloIMe Kpaesble 3a1a4n. [Ipu €® nosyuaercs 3aiada st y3(t, 7, x).
Jlyist maHHOM 331891 YCIOBUS CYIIECTBOBAHNS OTPAHMYEHHbBIX DeIeHui
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BBIPAXKAIOTCS CJIETyTOINIeil CUCTeMO ypaBHEHWIT OTHOCUTETHHO & 1 1):

L+(0)e = 3€((€* + 2l - ([ - 6 + 2cos(28) - U] 5 ).
L-(0)n = 3n(@ig + nf2) - ([~ 6+ 2c0s026) — ] g 1)
C LEPHOANICCKUME KPACBBIME YCJIOBUSAMHU ®
E(T, 2y +2m) =&(T, 2), n(T,2- + 2m) = (T, 2). 9)
31ech
LH(8)e 2@7(5)% — aé — R(5) - [% + 22'9(% _ 924 |
L~(5)nY —2@(5)% — ain — R(5) - [372 + 2@9887”_ - 9277} ,

cae R(5) = cos(25) — 17 (5) sin*(26) wam R(5) =+ cos’(5) 1

OCHOBHBIM pe3yJIbTATOM PabOThI ABJISETCI HOCTPOCHUE MHOIOIIAPA-
METPUYECKIX CEMECTB HeJIMHEeHbIX CUCTeM YPaBHEHWIl CIeIaIbHOIo
B4, KOTOPLIE UIPAIOT POJIb HOPMAJIBHBIX (DOPM JIId U3YYCHUS perre-
HUil ¢ HAYAJILHBIMU YCJOBUAMU U3 MAJIOH OKPECTHOCTH COCTOAHUST PaB-
HOBecHsl. B 9acTHOCTH, IPUBEJICHBI CUCTEMbI HeJIMHEHHbIX ypaBHEHHI
IpeITHepOBCKOro Tuiia (8), (9), permeHnsiM KOTOPbIX OTBEYAI0T OBICTPO
OCIIIJLTUPYIOTIIE PellieHnst NCXo[Hoi 3ajaqu. Ormernm, uro B [4] oboc-
HOBAHA BO3MOKHOCTD IOJIYUEHHsI C ITOMOMIIBIO IIPEJIOZKEHHON METOMKN
CYIIECTBEHHO 00JIee CJIOKHBIX HOPMAJIU30BAHHBIX CHCTEM.
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O HEKOTOPBIX IIOJZIXOJAX K PEIHHTEHNIO 3AJTAYN
«USEFUL PROOF-OF-WORK FOR BLOCKCHAINS»

ABOUT SOME APPROACHES TO THE SOLUTION OF
THE PROBLEM USEFUL PROOF-OF-WORK FOR
BLOCKCHAINS

Jypues B.T.!, Mypun /1. M.?

YsIpocaasckuti 2ocydapemeennmts ynusepcumem um. 11T JJemudosa,
Hpocaasav, Poccus; DurnevQuniyar.ac.ru
2 SIpocaascruti 2ocydapemeennuiti ynusepcumem um. 11T JJemudosa,
Hpocaasanv, Poccus; nirum87@mail . ru

Texnosorust 6yiok4eitH cymecTByeT yzke 10 JieT U OCHOBBIBAETCs Ha
paHee N3BECTHBIX TEXHOJIOTUAX ITUPUHIOBBIX ceTell, pacipejie/ieHHbIX 0a3
JIAHHBIX, JIEKTPOHHOI TOJINCH U Ha IPHUHIUIE JOKA3aTeIbCTBA Pado-
toit «Proof-of-Works [1]. CyTb mocsesmero npuHIuma COCTOUT B TOM,
9ITO HEKOTOpOe cOOBITHE (HAIPUMED, MEPEBOJL JEHEKHBIX CPEJICTB C OJI-
HOI'O cueTa Ha JIPYToil) CTAHOBUTCS 3HAYMMBIM (IIPUHUMAETCST OOJIBIIITH-
CTBOM YYACTHHKOB OJIOKYEHH-CETH KAaK CBEPIIUBIINICS (BAKT) TOJIBKO
110CJIe TOr0, KaK OHO ITOJATBEPZK/ICHO OIPEJICICHHBIM 00bEMOM BbIYUCTH-
TeJIbHOI pabOTHI.

3ajiaun 1moucKa OUTOBOI CTPOKHU € X3IIIEM, YIOBJIETBOPSIONIUM OIIpe-
JeJIEHHBIM YCJIOBUSIM (X3II-TOJIOBOJIOMKH ), KOTOPBIE B HACTOSIIIEE BPEMsI
IITUPOKO MCIOJIB3YIOTCS JIJIsT 0OecIieueHns JIoKa3aTeIbCcTBa PaboToil, 00-
JIAJIAI0T CYIIECTBEHHBIM HEJIOCTATKOM — Y HUX HET HUKAKOT'O IOJIE3HOIO
HPUMEHEHHST 38 MPeJIeJIaMI TeXHOJIOINN OJIOKIEliH.

MpI cuntaem, 9T0 MHAMBU/LyaIbHbIE TIpeacTaBuTes i NP-1o/1HbIx 3a-
nad (Iasmee MHAMBUIyATbHBIX mpecrasureseii NP-momubx 3agad Mbl
OyjieM Il KpaTKOCTH Ha3bIBATh 3a/adaMi, COOTBETCTBEHHO 3ajiada —
9TO MHOKECTBO 3aJ1a49) MOI'YT CUMTATHCS MOJE3HBIMU U YACTO BCTPEUa-
IOTCST Ha TTpaKTUKe |2, 3|, U mpejiaraeM 1o/ xo 1, MO3BOJISTFOIIH HCTIO b
30BaTh 9TH 33Ja9K JIJIsi 00ecreueHns JJ0Ka3aTeIbCTBa PaboTOil,

B ocHoBe HaIero mouxo/ia jezKaT npeJcTaBIeHHbIe HIXKE OTBEThI Ha
CJIeJTYIONIEeEe BOIIPOCHI:

1. Kak co3nasarn 3aga9m’

2. Kakum ajiropuTmMoM periarh 3aa4u’?

3. Kak ynpap/isiTh CJI0:KHOCTBIO CO3/IaBaeMbIX 3a/a4 7

4. Kak ocymiecTBUTh MPUBA3KY 3aa49n K nHdopMaImn 010Ka”?
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PaccmoTpuM J1Ba OCHOBHBIX criocoba, co3panmst 3ajad. [lepsoril co-
CTOUT B cOOpe U MCIIOJIb30BAHUN 3a/1a4, BOSHIUKAIOIINX B IIPAKTUIECKO
nesirestbHocTu. IloesnocTs 3a1a4 npu JAHHOM CIIOCODE CO3IAHUST Ove-
BIIHA, HO He Karkjasl IOoJIydeHHas TaKUM o0pa3oM 3ajada I0J0MHIer
JUIsT oDecleueHns JI0Ka3aTeIbCTBa paboToil. 3ajada MOXKET OKa3aThCsI
CJIUIIIKOM JIETKOH MJIM CJIMIIKOM TPYIHON J1/Ist OJIOKUEHH-CeTH, UTO IPU-
BOJINT K HEOOXOIMMOCTH OIIEHKH CJIOYKHOCTH 3aJad U €€ COOTHECEHHS C
BBIYUCIUTEILHBIMIA BO3MOXKHOCTAMU OJIOKYEH-CeTH.

Jpyrum criocoboM co3jiaHust 3a/a4 sIBJIIeTCd IPUMEHeHne Cliela-
JIT3UPOBAHHBIX T'€HEPATOPOB, KOTOPbIE MOI'YT CO3/1aBaTh 3aJlaull ¢ Ollpe-
JeJIEHHBIMU [IapaMeTpaMi (B TOM YHCJIe CJIOKHOCTBIO, PA3MEPOM U T.
J1.), COTJIACOBAHHBIME C BO3MOXKHOCTSAME O/10KUeiiH-ceTi. OHAKO M0J1e3-
HOCTb CO3/IaBaeMbIX 33/1a9 B 00IEM CIydae He rapaHTHpPOBaHA.

MorkHO paccMaTpuBaTh TaKyKe rmOpHUJIHbIE BapUaHThl CO3JaHUS 3a-
Jlad, HO [P OOJILIIIOM YHCJIE ITOJIE3HBIX 3a/1a4 IPUMEHEHIEe NeHepaTopOB
HeIe1eco00pa3Ho, MMOCKOJIbKY OYy/IeT OTBJIEKATH BBIYICIUTE/ILHBIE PECYP-
Cbl Ha MUCKYCCTBEHHO CO3/IaHHbIE 3aJaul, a IIPU MaJoM 4YHUC/Ie MOJEe3HbIX
3a/lay He SICHO IMPEUMYIIECTBO UCIIOJIb30BaHUS T'€HEPATOPOB MeEpeJ] UC-
II0JIb30BAHIEM X3III-I'OJIOBOJIOMOK. TeM He MeHee HCIIOJIb30BaHue THOPH-
JIOB MOKeT OBbITh OIpaB/IaHO, HAIIPUMED, B CJydasiX HEPABHOMEPHOI'O
IPUXOJa MOJE3HBbIX 3aJa4 JJIs YCPEJIHEHU YNCIa 3aJa9 JOCTYIIHBIX K
pelIeHnIo B eJIMHUILY BpeMeHN.

XopoIo U3BeCTHO, 4TO Jitobad 3ajiada u3 Kiacca NP, MoxkeT ObITh
nojinHOMUaIbHO cBejieHa K 3ajade KH®-poimomaunmoctu (SAT) [4]. Cre-
JloBaTe/IbHO, JII00O# MHAMBUIYaJIbHbIN IpejicTaBuTe/b NP-1moHON 3a-
JIadl MOYKeT OBITh CBEeJICH K MHJIMBU/YAJILHOMY IIPEACTABUTEIIO 3a1adn
KH®-sbinoinumocTu. st pemenns 3aja4n B ¢popme KHD-BoImoHI-
MOCTH MOKHO mpuMensitb SAT- pemrarenn, manpumep, CDSL SAT-
permaresn [5].

VIpaB/IsaTh CJAOKHOCTBIO 33184 MOXKHO IIyTeM TIPOBEPKH (JIst mep-
BOI'O CI0CcOba CO3aHNst) WK 3aJaHusi (JJisT BTOPOro crocoba co3/IaHms)
CJICAYIOIINX MAapaMeTPOB: NPUHAJJICKHOCTL K 0COOOMY BUJLY, Pa3sMep-
HOCTb, TpebyeMas TOUYHOCTDL pernienns. Kpome Toro, cyriecTBeHHOe 3HAa-
JeHue MMeeT PaKTUKa pelieHns 3aa4du (B cydae, ecii 3a/ada, KoTo-
pyI0 GJIOKYEiiH-CeTh He CMOIJIa, PelIUTh, MOXKeT OBbITh IIOBTOPHO IIPeJIJIo-
JKEHA JIJI peliennst) 1 OJIM3KUX 110 XapaKTePUCTHKAM 3aa4 OJI0KYeiiH-
cernio. Kak yzKe yloMuHaI0Ch paHee, CoO3JaHHbIe 3341 JI0JIKHBI ITPOii-
TH 0TOOD Ha NpeJIMeT IIPAKTUYECKOIl BO3MOKHOCTH pellleHns OJI0KIeiiH-
CETBIO € 3aJIAHHBIMI XaPAKTEPUCTUKAMIL.
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[IpuBsska 3aj1aun K nHoOpMalny 0JI0Ka MOXKET ObITh peam30BaHa,
HECKOJIbKUMHU CIIOCODAMM, PACCMOTPUM TOJIBKO OJIUH M3 HUX, OCHOBaH-
HBIIl Ha TPAJMIIMOHHON TEXHOJIOTMH OJIOKYEHH W MCIOJIL3YIONIUI XIII-
roJIOBOJIOMKH. MBI MOKeM BKJIIOUNTH OIMCaHue 3a/1auu B jiepeBo Mepk-
Jla, a ee pellleHue B CJyxKeOHyio mHpopMaluo 06Ji0Ka, 10cjie 4ero, B
COOTBETCTBUU C TPAJUIMOHHON TEXHOJIOTHEH OJIOKUYEH, PeruTh X3III-
I'OJIOBOJIOMKY JIJ1si 6JI0Ka B Takoit KoHdurypaiuu. Pelenne Xa1-rojaoBo-
JIOMKH 00€eCIIeUUT CBA3BbIBAHUE CJIy2KeOHOI mHdopMmaliun 0J10Ka, nHMOP-
MaIlii O COOBITHSIX, KOTOPble HEOOXOIUMO IOATBEPIUTH BbIYUCIUTE b
HOIl paboToil, n nudopMannn o 3aja4e, odbecrednBaoIeil COOLITUS BbI-
YUCUTEIBHON paboToil. BJiok, mosyuennblii TakuM 00pa30M, MOYKHO
Ha3BaTh <«TAXKEJIbIM», IIOCKOJIBKY Ha €ero (hopMHUPOBaHME HEOOXOIUMO
HOTPATUTh OOJIbIIE BHIYNCIUTEIbHBIX PECYPCOB 3a CUYET PEIIeHHs ITPH-
KpeIJIEHHON K OJIOKY 3aJiadu, 4eM Ha OObIUHbII «Jjerkuiis 0Jiok. [lo-
CKOJIBKY Ha (POPMUPOBAHKE TSXKEJIOr0 OJI0OKA, JIOJPKHO TPATUTHCS OO0JTh-
I1Ie BBIYUC/INTEIbHBIX PECYPCOB, TO HEOOXOINMO MOTUBUPOBATDH yIACTHHU-
KOB OJIOKYEeNH-CeT! K CO3IaHUI0 TAKNX OJIOKOB. DTOr0 MOXKHO JOOUTH-
cs yBeJIMUeHneM BO3HAIPazk/ieHus 3a pOPMUPOBAHNE TsI¥KeIbIX OJIOKOB
1 U3MEHEHUEeM IIpUopuTeTa B BbIOOpPE OJIOKUYEHH-CEThIO MPOI0JIXKAaeMOil
OJIOKUEITH-1IEIIOUKI B I0JIb3Y HE CaMOMN JJIMHHON IeIOYKH, HO caMoii
JUINHHOM IEMOYKI € YIeTOM «Becay BXOAAIINX B Hee TSXKEJIbIX OJI0KOB. A
HIMEHHO TSI2KEJIOMY OJIOKY MOXKHO IIPUCBOUTE «BeC» PaBHBII, HAIIpUMeD,
TpeM «BecaMm» Jierkux 0J10koB. COOTBETCTBEHHO, 3a I'€Hepaluio TearKe-
Jloro 6JI0Ka JIOJIZKHO OCYIIECTBIISTHCA TPEXKpaTHOE BO3HAIDarK/IeHNE, 1
IEIIOYKA U3 OJIHOIO TSIXKEJIOro OJIOKA JIOJI2KHA ObITh SKBUBAJICHTHA I1C-
IIOYKEe U3 TPeX JIEIKUX OJIOKOB.
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O HEKOTOPBIX PE3VJ/IBTATAX MCCJIETOBAHUI
3AJIAUU 0-1-PIOK3AK

ABOUT SOME RESULTS RESEARCH 0-1-KNAPSACK
PROBLEM

Jypues B.T.!, Mypun /. M.?

L SIpocaascruti 2ocydapemeenmvti ynusepcumem um. 11T Jemudosa,
Hpocaasav, Poccus; DurnevQuniyar.ac.ru
2 SIpocarascruti 20cydapemeernmiti ynusepcumem um. ILT. Jemudosa,
Hpocarasav, Poccusa; nirum87@mail . ru

Xoporio n3sectro [1, 2, 3|, aro IIpobisiema «0-1-proK3aks» siBJis-
ercst NP-1ntoj1HOIT 1 MOKeT OBITH chOPMYINPOBaHa, KaK BOIIPOC O paspe-
mumMocTu B uyncjax 0-1 ypaBHeHus Buja

mry + ... + apx, = b,

rjie ai, ..., G, U b — NPOU3BOJILHBIE HATypaJbHbIE YNUCIA, T1, ..., LTy —
HEM3BECTHBIE.

B 1978 romy P. Mepkib u M. Xemnman [4] mpemiokmim mepByo
(o1yO/IMKOBAHHYIO B OTKPBITHIX HCTOYHUKAX ) ACHMMETPUYHYIO CHCTEMY
mudpoBaHus, KoTopas basupopasiach Ha IIpobieme «0-1-prok3ak».

Barem B 1979-82 romax A. Hlamwup [5, 6] mokasas, ato meTon re-
Hepallil OTKPBITHIX KJOUell 110 3aKPBIThIM B Kpurirocucreme Mepkisi-
XeIMaHa He SIBJISIETCS HAJAEKHBIM, U «IPAKTHIECKN BCE» WHIMBULY-
asibHble TpejcTaBuTesn IIpobaembr «0-1-proK3aKs, BO3HUKAIOIINE B
9TOIl cucreMe, IMOJJIAI0OTCA PEIICHUTO.

Tem e menee IIpobiiema «0-1-prok3ak» 00/1a/1aeT I0JIE3HBIME
JUIst Kpunrorpadun cBoiicrBamu. Bo-11epBeIX, 0 Heil U3BECTHO, ITO OHA
SIBJII€TCS JIOCTATOYHO TPYJIHOM, W BO-BTOPBIX, MPEJICTABJISICTCS BEPO-
SITHBIM, 9TO Ha €e OCHOBE MOXKHO IIOCTPOUTH CTOHWKNE KPHUIITOCHCTE-
MbI C BBICOKOIT CKOPOCTBIO T poBanust U paciindpoBatust (HAIpUMep,
CKOPOCTh Mg poBannsa u paciimdpoBannsg B Kpunrocucreme Mepkiisi-
Xe/iMaHa CyIIECTBEHHO BBIIIE, YeM B Kpunrocucreme RSA).

B kpurnrrocucreme Mepkiisi-XesiMana MHOKECTBOM OTKPBITHIX KJTIO-
el SBJIsIeTcs MHOXKECTBO NHBHEKTHBHBIX HAOOPOB HATYPAJIbHBIX THCE,
Jutst koTophiX IIpobsema «0-1-prok3ak» mMmeeT He OoJiee OJIHOIO pe-
menusi. [losroMy nsyueHne NHbEKTUBHBIX HAOOPOB HATYPAJIbHBIX THCEI
IIpeJICTaB/IsieT 0COObI MHTEPEC.
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ONIPEJEJIEHUE. Bynem HasbiBaTh HAOOP HATYpaJbHBIX GHCES A1,
co oy Gy UHBEKMUBHBIM (COOTBETCTBEHHO M-UHBEKMUBHIM ), €CTTH HE CY-
MECTBYeT JIBYX pasjndHbix HabopoB umcen 0-1  (cooTBeTCTBEHHO
0,...,m — 1, nae HATYpATBHOE TUCTIO M > 2) O, ...,0n U B1,..., 0y
TaKIX, ITO

aog + ...+ a, = a1 + ...+ anf,.

B nporusHOM ciiydae HabOp HATypaJbHBIX YUCET G, . .., d, OyJIeM Ha-
3bIBATH HEUHBEKMUGHVLM (COOTBETCTBEHHO M-HEUHBEKTUGHDIM ).

Citestytonue TeopeMbl JIAI0T MPEJCTABICHIEe O JHC/Ie MHbEKTHBHBIX
1 M-THHbEKTUBHBIX HAOOPOB U3 1 HATYPAJTbHBIX UYNCE ¢ MAKCUMATbHBIM
9JIeMEeHTOM paBHBIM M .

Teopema 1. Ync/io uHbEKTHBHBIX H M-UHBHEKTUBHBIX HAOOPOB U3 N
HaTypaJbHBIX THCEJT ¢ MAKCUMAJIbHBIM 3JIEMEHTOM paBHBbIM M orpann-
YEeHO CBEpPXY BEJIUYUHOH

Pi(m,n, M) =nlCy/ |,

rye nosaraem M > n, C? — qncio cogeranuii.

Teopema 2. Ywncyio m-uHbEKTHBHBIX HAOOPOB U3 N HATYPAJbHBIX
qHces ¢ MaKCHMAaJIbHBIM 3JIEMEHTOM paBHbIM M orpanmdeHo CHH3Y Be-
JIMYUHOHU

M—-mr141 1) (M—m”_1 - 1)n—2

Py(m,n, M) = n!( (= D=2

7nn—1

e nostaraem M > m™ L.

Ormernm, ato u P(m,n, M), u Po(m,n, M) npu hukcupoBaHHOM
m ABJISIIOTCA noJmHoMaMu n — 1 crenenn ot M.

CaencrBue 1. Ynucjio HHbeKTHBHBIX HAOOPOB M3 M HATYPAJbHBIX
qHces ¢ MaKCUMaJIbHBIM 9JIEMEHTOM paBHbIM M orpaHmdeHo cHu3y Be-
JIMIUHOH

n—1 n—1 —_
n!(M 2271_2 L 1) <M ;_1 il 1>n 2, e mostaraem M > 2771
Paccmorpum cieyroniue 3a/1aqu.
Bagadya «/lHbEeKTUBHBIN PIOK3aK» (<« M-UHbEKTUBHbBIN PIOK-
3aK» ).
amo: nabop HamypasvHvlL YUCEA A1, . . . , .
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OnpenennTb: AGAACMCA AU HAOOD UHBEKMUGHVIM (M -UHBEKMUG-
HbLM,).

Bagaya «HemnbekTuBHbBIl pPIOK3ak» («mM-HEMHbHEKTUBHBIM
PIOK3aK» ).

JaHo: Habop HamypasvbHbLT YUCEA A1, . . . , Oy,

OnpenennTthb: ABNAEMCA AU Habop HEUHBERMUBHDIM
(M-HEeUHBERMUBHBIM,).

OueBniHO, 9TO 3a/la9a «2-NHBEKTUBHBIN PIOK3aK» 9KBUBAJIECHT-
Ha 3aja49e « IHbeKTUBHBIN PIOK3aK», I 3a/a9a «M-NHbEeKTUBHBINI
PIOK3aK» BKJIOYaeT B ceds 3ajiauy « HbEeKTUBHBIA PIOK3aK» .

fcno, uro 3anaun « HeMHbeKTUBHBIN PIOK3aK» U «M-HEMHbEK-
TUBHBIIA PIOK3aK» SIBJIAIOTCS JONOJHEeHUsIME 33/1a9 « VITHbeK TMBHBI
PIOK3aK» 1 «M-UHbEKTUBHBIN PIOK3aK» COOTBETCTBEHHO I IIPUHAJI-
nexat xkinaccy NP.

Cuestytonue yTBepzKIeHNsT YCTAHABIMBAIOT K KAKIM KJIaCCaM CJIOXK-
HOCTH OTHOCSITCSI paccMaTpUBaeMble 3a/1atu.

Teopema 3. 3asauva « HemHbeKTUBHBII pIOK3aK» siBjsieTcsi INP-
ITOJIHOH.

CrnencrBue 1. 3ajjaua «m-HeMHbEKTUBHBIN PIOK3aK» SIBJISCTCS
NP-mos1HO7.

CrnencrBue 2. Bajaun « IHbeKTUBHBIIN PIOK3aK» U «M-UHbEK-
THBHBII PIOK3aK» ABJISII0TCsT CON P-110JIHBIM.
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O HEKOTOPEIX 3AJTAUYAX OIITUMAJILHON
J0BbIYM1 BO3OBHOBJIAEMOI'O PECYPCA

ON SOME PROBLEMS OF OPTIMAL HARVESTING OF
RENEWABLE RESOURCE

Eroposa A.B.!, Poguna JI. 1.2

L Baadumupexuti 2ocydapemeenionti yrueepcumem
um. A.I. uw HI. Cmosemoswvix, 2. Baadumup, Poccus;
nastik.e@bk.ru
2 Baadumuperuti 2ocydapemeentoiil yrusepcumem
um. AT u H.I. Cmoaemosvix, 2. Baadumup, Poccus;
Lrodina67@mail.ru

OCHOBHBIM OOBEKTOM HCCJIE0BAHUS B JJAHHOI paboTe SIBJISIOTCS MO-
JIeJIn JUHAMUKN HEOJHOPOIHON IOMIYJ/ISINN, 3aJaHHble Pa3sHOCTHBIMUI
ypaBHeHusimu. OJiHa U3 TaKUX MoJeseil — MoJeb ABYXBO3PACTHOM JIk-
MUTHPOBAHHON IOIYJISIIIUN, TIOJBEPZKEHHOI IIPOMBIC/IY — OIIMCAHa B pa-
oore [1]. st maHHBIX MOjesieli pacCMaTPUBAIOTCS 3a/1a91 OMTHMAJTBHO-
ro cbopa pecypca Ha OECKOHEYHOM ITPOMEXKYTKE BPEMEHH IIPU pa3/ind-
HBIX OIPAHIYEHUSIX Ha YCJIOBUS IIPOMBIC/IA.

Obo3HauYMM 4yepes T, U ¥, KOJUIECTBO pecypca KarkKJI0ro BHUIA HJIH
BO3pacTHOro Kjacca B MoMeHnT Bpemenu n € {0,1,2,...}. Ilycrs B Mo-
MEHT 1 MOYKHO COOUPATh JOJIH PECYPCOB Uy, U KarKJIOT0 BUJIA UJIN O/I-
Horo n3 Bu1oB. Oupejeanm

U={u:u=(up,up,...,u...)} V={0:9=(vo,v1,...,0n,...)}

I paccMOTPHUM MocienoBaTenbHoctn 4 € U, v € V' Kak ymnpaBjieHus,
KOTOPBIMHI MOYKHO BapbUPOBATH JIJIsl JOCTUXKEHUsI JIyUIIero pe3y/ibTara
cbopa pecypca. VceiempyeM Moje/b SKCILIYaATUPYEMOil OIS

Tn+1 — fl((l - un)wna (1 - Un)yn)a

Yn+1 = f2((1 - un)xn; (1 - Un>yn)7 (1)
re fi(z,y), fo(z,y) — sanammeie as seex (r,y) € RY = {(z,y) €
R? : 2 > 0,y > 0} BemecTBeHHble HelPepbLIBHbIE HEOTPUIATELHbIE
dyHKIUN.

[Tycts C4, Cy — cTomMOCTH YCJIOBHON €MHUIIBI KaXKI0I0 U3 BUJIOB,
a1 = 0, a9 > 0 — mokaszaresn JUCKOHTHPOBAHMS, TOIA CTOMMOCTE BCeit
JTI0OBIBAEMOI TIPOYKIIME B MOMEHT 7, paBHA
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n = Crxyupe” " + Coypve 2",

st mobeix (4,0) € U x V n Xy = (x0,y0) € RL onpesennm cped-
HI010 BPEMEHNYIO 6bl200Y OT U3BJIeUeHHs pecypca npu «p > 0, a9 > 0
PaBEHCTBOM

n—1
u npu oy = a = 0 paBenctBoMm H) (a,@,XO) = lim =) hy.

Ilon cmauyuonapnvim pestcumom KCNAYAMAUUY TOTYISIIN Oy1eM
MOHUMATE TAKOM CII0CO6 T0OBIMN pecypea, pu KOTOpoM u, = u € [0, 1],
v, = v € [0,1] mag Becex n = 0,1,2,... win mig n > Ny. Homycrum,
9TO MPU JIAHHOM pekuMe cucreMa (1) mMeeT YCTONUNBYIO HEMo BIK-
uyto Touky X* = (z*,y*), e ¥ = x*(u,v), y* = y*(u,v). [lycrob
D = D(X*) saBisercss MHOKECTBOM HPHUTSZKEHNST TOUKN X *. Beenem

B paccmorperne MuOKectBo D = D(X*) = | [z, 400) X [y, +00),
(z,y)eD
pyHKITIIO
F(SU, Y, u, U) - (fl((l - u) ( - U)Q)) f2((1 - u):v, (1 - U)y))*
u F™(x,y, ugy -y U1, 00, - -+, Up—1) — M-10 urepanuto Gyukmun F)
m =1,2,.... Iycrs muoxectso £~ (D) cocrour us touek (x,y) € R?
TaKUX, 4TO
F™(,y,ugy -+« s Um—1,00, - - - s V1) € D
HPH HEKOTOPBIX (U, - - - Uny—1, V0, - - -, Um—1) € [0,1]2™ u FO(D) = D.

Teopema 1. IIpesamnosoxumM, 9TO NIPU CTAITHOHAPHOM DEXKHME SKC-
miyaramn cucreMa (1) uMeer ycToiduByO HEMOJBUKHYIO TOUKY X * =
(x*,y"), e x* = x*(u v), y¥* = y*(u,v). Torga mis sroboii Hava b

Hoii Toukn X € U F~ (5) cymectBytoT yrpasjenns (u,v) € U X'V,

TaKHe, Y10 BBIIOJICHO PABEHCTEO
Hy(a, v, Xo) = Cra*(u, v)u + Coy*(u, v)v.

PaccmoTpennl npuMepbl BBIYUCICHUA CPeJIHEl BPEMEHHONH BBITOJIbI
H, (a, v, XO) JUTST IBYXBO3pacTHoil omytdaruu. [Tpn sToM yauTbiBaeTcs,
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YTO SKCILIyaTUpyeMas MOy 00J1aaeT CBOWCTBOM MYJIbTHPEXKITM-
HOCTH, TO €CThb IIPU OJIHUX U TeX Ke 3HAYECHUAX IapaMeTpPOB CUCTEMbI
(1) HaburoA0TCsT pa3MIHbIe TMHAMUYECKIEe PeyKIMbl. Harpumep, npu
CTAIIMOHAPHOM PEXKUMe U3bATUS TOJIBKO U3 MJIaJIIIIEll BO3PACTHOI I'PyTI-
bl TPAEKTOPUA, BBIMYIIeHHas U3 HAYAJIbHON TOUKM, TPUXOJUT JUOO B
HETOJIBUKHYIO TOUKY, JINOO MPUOIMKAETCSd K IUKJIY JITMHBI TPH, B 3a-
BUCHMOCTH OT HaYaJIbHbIX 3HAYCHUIA.
J11s1 pa3HOCTHOTO YpaBHEHUS ITEPBOTO TOPSIIKA

Ln+1 :f((l_un)xn)a n:071727"'

o0
OTIpesIeTUM CPEJIHIOI0 BPEMEHHYIO BBITOy H, (ﬂ,xo) = 3 zpupe*
k=0
1 n—=l
npu « > 0 u Ho(ﬂ,xo) = lim — > zpuy.
Teopema 2. Ilycro G(z) = f(x) — e“x gocTuraer MaxcuMasib-

Horo sHadenns npu T > 0 um st xg > 0 cymecrByer kg = ko(xg) —
nanvenpiiee 3 ancer {0,1,2, ...}, rakoe, uro f*(zy) > 7. Torma nan-
boJibiliee 3HadeHne (yHkimii H, (ﬂ, xo) n H, (ﬂ, :co) JIOCTHTAETCSI IIPH
CTAIIOHAPHOM PEXKIME SKCILITYaTALN:

H, (a*a 930) = (fko(xo) — f) e~k 4 f(x)——x e~ kot1)

Hy (", o) = f(T) — 7,

x
* % — * o __ o -
e uy = ...—uko_l—O, Uy, =1 yup =1 JIJIsT BCex

- [R(ao) /(@)
k> k.

Pa6ora BbinosiHena 1pu dunancosoit nojepxkke PODU (mpoekr Ne 16-01-
00346-a).
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AHAJIN3 YCTOMYMBOCTU PEIIIEHUN
HAYAJIBHO-KPAEBOM 3AJTAYN J1JIA
ITAPABOJIMYECKOT'O IN®PEPEHIINAJIBHOT'O
VPABHEHUYA C OITEPATOPOM ITOBOPOTA
IIPOCTPAHCTBEHHOT'O APTYMEHTA "
3AITA3IBIBAHUEM

Ky6bimmkun E.I1.!, Kymukos B. A.?

L pocaascruti 2ocydapemeennod ynusepcumem um.I1.1. Jlemudosa,
Hpocaasav, Poccus; kubysh.e@yandex.ru
2 SfIpocaascruti 2ocydapemeennuiti ynusepcumem um. 11T Jemudosa,
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B kpyre Kg ={(p,¢): 0<p < R,0< ¢ < 27} paccmarpuBaercsi
HaYaIbHO-KpaeBasd 3ajada Jisd 1apaboImuecKoro ypaBHeHus: BUa

u +u = DA gu + bugr, u, =0 (1)

orHocuTeIbHO yHKIMU U(p, ¢, t+5),t > 0, —T < s <0, e T > 0 Be-
JIMIIHA 3ala3/IbIBaHmsd apTyMeHTa, ¢ HAdabHbIM ycaoBueM u(p, ¢, s) =
uo(p, ¢,s) € H(Kg;—T,0)— mpocTpaHCTBY HadaJbHBIX ycaoBuil. B
(1) A,s— oneparop Jlamnaca B mossipHbIX KoopjauHatax, ugr(p, ¢,t) =
u(p, ¢+ 0,t —T)(0 < 0 < 2m) — oneparop MOBOPOTa MPOCTPAHCTBEH-
HOIO apryMeHTa ¥ BPEMEHHOIO 3alasibiBanust, D, b — 10I0:KuTe/IbHbIe
IOCTOSAHHBIE.

Perraercsa 3a1a4a nocTpoenus B ipocrpatcrse napamerpos D, b, T, 6
obJ1acTeil yeTONINBOCTY PelieHnit Hada bHO-KpaeBoit 3agadan (1), ucce-
JIyeTCsl XapaKTep IOTepU YCTONIMBOCTH [IPH IIPOXOKACHUN [1APAMETPOB
IpaHuIbl 00JIaCTH YCTOHYNBOCTH.

Onpenenss pemenns (1) suga u(p, ¢,t) = v(p, ¢)e M, A € C nomy-
UM IIy4YeK OIIEPATOPOB

Xo(p, 6) +v(p, ) — DAysv(p, ) +bv(p, o +0)e ™, v,(R, 6) = 0, (2)

CIIEKTP KOTOPOT'O OIPEJIEIsAeT YCTOHINBOCTh (HEYyCTONINBOCTE ) PeIeH i
HaTaJIbHO-KpaeBoit (1).
Ompegiensast perenne (2) B Bujie

oo 0

v(p, @) =v0+ Y Y Ju(nip/R) (g™ + v—nje "?),

j=1 n=—o00
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(i = V=1, wvo,vp;,v_pn; € C), rae Ju(p) dbyukuun Beccenst mepsoro
POJIa N - TO HOPSIJIKA, & Yy, J - IOJOKUTeTbHbIH HOb dyHKIWN J, (p),
HOJIyIUM IOCJIEI0BATEILHOCTD YPABHEH I

(A+1+ D%Zw- +be™ Ay =0, A1+ D%QU- +be Ay =0,
(3)
13 KOTOPBIX OIPEJIEJSIFOTCA TOYKHI CIEKTPa IydKa Oleparopos (2), or-
Bedalolllle 3a YCTONYMBOCTL peltenuit (1), u HeHyJeBble Vg, Upj N =
0, 41,42, ...
st mocrpoenust rpanut objacTeil yCTOHYNBOCTH B IPOCTPAHCTBE
napamerpoB D, b, T, 6 Bocuoib3yemcs Merojgom I - pasOuennmii. [ljst
9TOrO MOJIOKUM B (3) A = iw, w > 0 u npupaBHsieM HYJIO BEIIECTBEH-
HYIO I MHUMBIC YaCTH BBIPAZKeHUI B KPYIVILIX CKOOKax . ITosydennble
ypaBHeHust 03BOJIAI0T Bbipasuth b = b(D, T, n,w) u 0 = 0(D,T,n,w).
3mMensas Tenepb w, Ui pasaudHbIX sHadenuit D, T, n mocTpoum rpa-
HUIBI [Iepexojia TOYeK CIIeKTPa MyUYKa ONeparopoB (2) mu3 JieBoil KOM-
ILJIGKCHOI MOJIYILJIOCKOCTU B IIPABYIO M, TEM CAMBIM, HOJIYYUM IDaHUILY
06JIaCTH YCTONYMBOCTH U UCCJIELYeM XapaKTep IOTepU YCTONIMBOCTU
peleHnii HadaIbHO-KpaeBoii 3aaan (1).
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Ob OJIHOM OCOBOM CJIVHAE JIJIA
CJIABOAMNCCHUIIATUBHOI'O KOMIIVIEKCHOTI'O
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ABOUT ONE SPATIAL CASE FOR THE WEAKLY
DISSIPATIVE COMPLEX GINZBURG-LANDAU
EQUATION

Kymkos A.H.!, Kysmkos JI. A.?
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B paborax [1-3] 6bL1a paccMoTpeHa epuojindeckas Kpaesas 3ajada
JUIs cJ1abOJUCCUIIATUBHOTO — BapuaHTa — KOMILIEKCHONO — yPaBHEHMUS
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['mu36ypra-Jlanay B cirydae Npon3BOJIBHOIO YUC/IA TPOCTPAHCTBEHHBIX
HepeMEeHHbBIX
wy = u — (1 +ic)ulu* — idAu, (1)

rie u = u(t,z1,...,2,),n € N,d,c € R,d > 0, Au — oneparop Jlarra-
ca 110 IMPOCTPAHCTBEHHBIM TIepeMeHHbIM. B 3Tux padoTrax ObLIN yKa3aHbI
ABTOMOJICJIbHBIE TIEPHOJIICCKIE 110 T pernenust Bujia exp(io,t+i(m, )),

n
riae o, = —c+d E m?,
j=1

n
(m,x) = g m;x;, m; € Z. Bl uccaejoBal BOIPOC 00 UX yCTONINBO-
J=1
CTH ¥ JIOKAJILHBIX OM(ypPKALUSIX NHBAPUAHTHBIX TOPOB.
B nokiaje orpaHudnMcsd pacCMOTPEHUEM YaCTHOIO CJydast, KOIJIa
n = 1 1 paccMOTPUM KPAEBYIO 3314y

wy = u — (1 +ic)ulul* — idug,, (2)
u(t,x + 2m) = u(t, x). (3)
1
[Ipu sTOM paccMoTprM 0coObII ciydail 1 OyIeM CIUTaTh, 9To € = — <<

1. Tocne 3amennr s = td kpaeByio 3ajady (2), (3) MOXKHO 3ammcaTh B
BIJIE
U = —iUgy + cull — (1 +ic)|ul?, (4

u(s,x + 2m) = u(s, x). (5

Teopema. CymecrByer takas IOJOXKUTEJIbHAS HOCTOSHHAS €) =
eo(n), aro npu Beex € € (0,e9) Kpaepas sagada (4), (5) mmeer To-
por T),(e) smoboii pasmeprnoctu p < n. Opuomepubie  "ropor" (1ukiibi)
YVCTOHYHUBBI, & TOPbl HHOH pPa3zMepHOCTH,0TJIMIHOIH OT 1, ceIoBbIe.

g pemenmii,  OpUHAJIEKAIIUX — MHBAPDUAHTHBIM  TOpPaM
T,(e) (dimT,(e) = p) crpaseIMBBI ACHMITOTHYECKHE (DOPMYJIDI

u(t,x,e) = 7 —ec)t +npx + on,) + O(e),

9 p
——229 - ; cos((n

riae {ny} — Habop W3 p MENbIX 4ucel, a @, € R 1 IpOU3BOJIBHBI, a
p < n.

O6ocnoBanne TeopeMbl OCHOBAHO Ha UCIOJIL30BAHNM AllllapaTa Teo-
pHUI HOPMAaJILHBIX (DOPM U YyTBEPZKJICHUI O COXPAHCHUN MHBAPUAHTHBLIX
TOPOB NIPH BO3MYIICHUSIX.
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JANHAMWYECKUE CUCTEMbBI C KOJIEBATEJIBHO
YBBIBAIOIIINMHI KOSPPUITNEHTAMMN:
HEKOTOPDBIE 3A/TAY1 TEOPUN
ACYMIITOTNYECKOI'O MTHTETPUPOBAHU A

DYNAMICAL SYSTEMS WITH OSCILLATORY
DECREASING COEFFICIENTS: CERTAIN PROBLEMS
OF ASYMPTOTIC INTEGRATION THEORY

Hectepos II. H.

Hpl'Y um I1.T. Jemudosa, 2. HApocarasav, Poccus;
p.nesterov@uniyar.ac.ru

B nokiaje m3jaraioTcsa HEKOTOPhIE O0Iue pe3y/ibTaThl, JerKallle B
OCHOBE 3a/Iaull II0JIyUeHUs] aCUMIITOTUYIECKUX IIpeJICTaBJIeHuil JI/isi pe-
[IeHN JTUHEHHBIX JMHAMIYECKIX CHUCTEM C TaK Ha3bIBAGMBIME KoJjeba-
TeJIbHO YObIBaIOMINMEI KoM MUIIMEeHTaMI P CTPEeMJIEHIN He3aBUCHMOI
nepeMeHnHoil K OeckonedHocTn. Pedun 371ech mer Kak 0 KOHEIHOMEPHDBIX
JmHeHbIX cucremax O1Y

i=[A+G(t)]z, xeC", (1)

TaK 1 0 OECKOHEUHOMEPHBIX crcTeMax (hyHKIIMOHAILHO-TuddepeHIab-
HBbIX YpPaBHEHUN

& = Ax+G(t, zy), reC" x(0)=2(t+0), —h<0<0, (2)
a Takzke 00 ypaBHEHHsIX B OAHAXOBOM IIPOCTPAHCTBE
i=[A+G)], r € B. (3)
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B sTux ypaBHeHUsIX MaTpuiia nin oneparop A He 3aBUCHT OT IepeMeH-
HOII ¢, a MaTpua win ornepatopHas dbyHkiust G (+) sSABISETCI HEKOTOPBIM
BO3MYIIIEHIEM, KOTOPOE, B CBOIO OUePeih, OT IIEPEMEHHOIT ¢ yrKe 3aBUCHT.
[Ipuuem Bosmytenue G(-) SBISETCS B OMPEJIETEHHOM CMBICJIE MAJIBIM.
IMeHHO, OHO COCTOUT W3 JBYX KOMIIOHEHT, OJHA U3 KOTOPBIX sIBJISETCST
abCOJTFOTHO MHTErpUPYeMoil Ha IPOMEKYTKeE [t, 00) MaTpuileil uin ore-
paTopHOil QyHKIINEN, a apyras — CTPEMHUTCI K HYJIIO0 KOJebaTeTbHBIM
obpasoM 1ipu t — oo. Takum obpazoM, paccMaTpuBacMble YpaBHEHUS
SIBJIAIOTCS ONIPEJIEIEHHOTO POJia BOBMYIIEHUSIMU CUCTEM C TIOCTOSHHBIMI
ko dunmenTamu. Kak okasbIBaeTcs, BUJI KojebaTe/bHO yOBIBAIOIICH
cocrasyistrortieii Bosmyierust G(+) MOXKeT CyIecTBEHHbIM 00pa30M BJIl-
SITh Ha JIMHAMUKY DPENIeHnil YKa3aHHbBIX YPaBHEHNI.

MpI 1puBejieM HECKOJIBKO PE3YJIbTATOB, KOTOPhIE MO3BOJISIIOT CTPO-
UTh aCUMITOTUKHN JijIs perennii ypasuennii (1) — (3) mpu t — oo.
B wacTHOCTH, MBI IIOTOBOPUM O KJjaccudeckoit Teopeme H. JleBumrcona
[1], obeyaum ujiero yepeHsonnx 3aMeH epeMeHHbIX [2], a Takzke Boc-
OJIb3YEMCsT HJICOJIOTHEN TeOpUH IMEeHTPATBHBIX MHOrooOpasuit [3| ms
pelleHns 31291 AaCUMITOTHIECKOro nHTerpuposanus [4,5]. MsI mpouni-
JIIOCTPUPYEM IIPEIJI0KEHHY0 METOIMKY Ha IIPUMepPe MOCTPOEHUST aCHMII-
TOTHYECKIX (DOPMYJI JIJIsT PelIeHiI KOHKPETHBIX JUHAMUIECKUX CHCTEM.

Pa60Ta BBIIIOJIHEHa& B PaMKaX I'OCyJapCTBEHHOI'O 3a/laHUA MI/IHI/ICTepCTBa O6pa—
soBanud u Hayku PP, nmpoekr Ne1.12873.2018/12.1.
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BE3OITACHOCTD IIOTOKOB /IAHHBIX B
ITPOI'PAMMHO-KOHOUT'YPUPYEMBIX CETAX

INFORMATION FLOW SECURITY IN
SOFTWARE-DEFINED NETWORKS

Cokosos B. A.!, Yajsrni . FO.?

Y Ipocaascruti zocydapemeenmnti ynusepcumem um. 111 JJemudosa,
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[IporpaMMHO-KOHGDUIYpUPYEMbIE CETHU sIBJISIIOTCSI COBPEMEHHOI, 060~
Jlee TUOKOI mapaJIurMoii IMOCTPOEHUs IPOIrPaMMHO-KOHMUIYPUPYEMbIX
ceTeil, KOTOpasi MO3BOJISIET IIPOIPAMMHBIM 00pa30M YIIPABJISITL CETEBbI-
MU pecypcamu. jist 9TOro B c€TU BbIJIEJISI€TCs YIIPABJISIONIAs CYIIHOCTD
— KOHTPOJLJIED, HA KOTOPOM BBIIIOJIHAETCSI IIPOIPAMMHBII KO/, YCTaHAB-
JINBAIOIINI IIpaBmia nepejadn Tpaduka Ha YIIPaB/IsSeMbIX KOMMYTaTO-
pax. [Ipu 3ToM MoOzKeT OBITH TOBBIIICHA 6€30IIaCHOCTh KOMMYHUKAIIOH-
HOI1 CeTH, IIOCKOJILKY IIPOrpaMMHO-KOH(MUIYPUPYEeMbIe CeTH IIPeIoCTaB-
JISIIOT ropasjio OoJiee GoraThlii HAOOP CPEJCTB JIjIsI YIPaBJIEHUS CETbIO,
YeM TPaUIINOHHbIE TIOIX0/bI, OCHOBAHHBIE Ha, KOH(MUI'YPUPOBAHIN I MO-
HUTOPUHIE YCTPOICTB.

Obecrievuenne 6€30aCHOCTH MIEPeIadn TaHHBIX B IIPOIPAMMHO-KOH(U-
I'YPUPYEMBIX CETAX SIBJISETCS BaXKHOI 1 aKTya bHOI 3aadeit. [Ipu sTom
HEeOOX0IMMO 00ecIednTh 0e3011aCHOCTh KAHAJIOB Ilepejadn JaHHBIX OT
KOHTPOJLIepa K yIIpaBjseMbIM ycTpoiicrBaM. B ToM ciydae, Koriaa KOH-
TPOJLIED SIBJISIETCSI PACIIPE/Ie/IEHHBIM, HEOOX0INMMO 00ecIednTh be3omac-
HOCTDb MEXK/Iy YIIPABJISIIONINME CYIIHOCTSIMI KOHTPOJLIepa. BayKHbIM s1B-
JisieTcsi BepupuKals IporpaMMHOr0 obecriedeHusi, KOTOpoe peasin3yeT
JIOTUKY YIIPaBJIEHUsI, TIOCKOJbKY HaJIMdre OMINOOK, BEAYIINX K COOSM,
MOKeT CYIIECTBEHHO CHUXKATh KadecTBO CEPBHCa U CO3/aBaTb YIPO3bI
6e301aCHOCT KOMMYHUKAITMOHHOI ceTn. Eie ojiHoil 3a1a4eil siBsieTcst
paspaboTKa CPEJICTB, CIOCOOHBIX OCYIIECTBJISATH MOHUTOPUHI COOTBET-
CTBUSI ITOCTOSTHHO M3MEHstoIIeiics KoHUrypamuu mporpaMMHO-KOHMU-
I'yPUPYEMOIii ceTu TeM TPeOOBAHMSIM Oe3011aCHOCTH, KOTOPBIE K Heil IIpeib-
SIBJISTEOTCSI.

OHEM 13 TAKUX IOJIXOJI0B ABJISIETCS aHAJIIN3 NH(MOPMAINOHHBIX 110~
TOKOB, T.€. aHaJIN3 TOI'0, KaK KOMMYHHUKAIIMOHHBIN TPahuK MOXKET Pac-
IPOCTPaHSAThCA 10 ceTu. IIpm aTOM OCHOBHOIT 3ajiaveil SIBJIAETCS HEI0-
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yIieHne nepejadn Tpauka OT CYNIHOCTEH ¢ MOBBIIEHHBIM YPOBHEM
6e30IMacHOCTH K TeM, KOTOpble NMeIoT Oojiee HU3KMIT ypoBeHb. TakumMu
CYIIHOCTAME MOTYT ObITH KaK OTJIeJbHbIE Y3JIbl CETH, TAK U OTJ/Ie/IbHbIE
npuyiokenud. [Ipn sToM Bo BTopoMm citydae HEOOXOIMMO YINTHIBATL, YTO
Ha OJITHOM BBIYUCIUTE/THHOM y3J1€ MOTYT UCIIOJTHATHCS pa3Hble KATErOpUH
npuyiokKennit. Torja oTBETCTBEHHOCTD 3a UCKJIIOUEHNE HerKeTaTeTbHbIX
UHQPOPMAIMOHHBIX TTOTOKOB ITEPEHOCUTCS HA YPOBEHD OTIEPAIMOHHOI CH-
CTEMBI.

B jaHHOI KOHIENITNHN IPEJIITOIaraeTcs, YTO 3JI0YMbIIIJIEHHIK MOZKET
UMeTh JIOCTYII K y3J1aM CeTH, KOTOPbIe UMEIOT OoJiee HUBKUIT yPOBEHDb Oe3-
oracHocTH, b0 K KaHastaM cBsa3u. CiegoBaTesibHO, HEOOXOIUMO yUl-
THIBaTh, YTO CEKPETHBIE JAHHBIE MOT'YT ObITH IIepEeXBavdeHbl NN NCKAYKe-
HbI 3JIOYMBIIIJICHHUKOM. [Ipn 9TOM M30Js111sT TOTOKOB, KOTOpas IPeJi-
CTaBJISIETCs] OYEBUIHBIM PeIleHneM, He IO3BOJISIeT PelraTh Psil 3a/1ad,
HAIpUMeDP, MOHUTOPUHI y3JI0B ¢ HU3KUM yPOBHEM O€3011acHOCTH y3Jia-
MHI C BBICOKIM YPOBHEM 0€30ITacHOCTH.

Bce 3T0 npuBOJMT HAC K MOWCKY peIIeHUil MOCTaBJIEHHON 3aiadu
C TIOMOIIBIO JIOTHYECKNX cpeacTB. [IocKoMbKy cTanmapT mporpaMMHO-
KOH(UTYPUPYEMBIX CeTeil olpejessieT orpaHnIeHHblii Habop yIpaB/is-
IOIUX TIPUMUATHBOB, KaXKJblil 13 KOTOPBIX MUMEET JIOCTATOYHO TOYHOE
olpeJieJICHUE, Mbl JIJTs KazKJIOr0 13 HUX MOYKEM OIPEJIeJIUTh IIPaBUJIa JIO-
IMYECKOr0 BbIBOJIA, KOTOPDIE MO3BOJIAIOT OIIPEJICJUTD, JOIYCKAeT JIn Ta-
KOl TPUMUTHB HAPYIIEHN CBOHCTB Oe3onacnocTn win Het. [loryuennas
CHUCTEMa JIOTUYECKOI'0 BBIBOJIA JIONOJHACTCA MIPaBUJIaMU, KOTOPbIE I103-
BOJIAIOT aHAJN3UPOBATH TaKZKe KOHKATCHAIMIO YIIPABJIAIONINX KOMAHJ.
B pesyabrare MBI TOJIydaeM JIOTHYECKYIO CUCTEMY, KOTOpas IT03BOJIsIeT
Ha JIETYy aHAJM3UPOBATH COCTOAHUE CETU U CUTHAJIU3UPOBATH O BO3HU-
KAIOIINX OIMMOKAX KOHMUTYpaIll, KOTOPbIE MOT'YT IPUBOJIUTH K SIBHBIM
I HEIBHBIM yTeYKaM KOH(MUIEHTTNAILHBIX JTaHHbIX.

MozkHO paccMOTpeTh CJeayIoNe MepcleKTUBHBIE HallpaB/JIeHus NC-
caenoBanuii. Kak Mbl y2Ke ykazajn paHee, 301U THOOPMAIMOHHBIX
[IOTOKOB BJIAETCA PElIeHUeM, KOTOPOe He JIOIyCKAeT MHOIMX ITOJIC3HBIX
MPUJIOKEeHWH. B ¢BA3M ¢ 9TUM MOXKHO MTPEIIOKNUTD TOJIXO/bI, JIJIT KOTO-
PBIX JIOTHYecKas CUCTEeMa, MTOC/IEI0BATETHHO CTPOUTCS UCXO/Id U3 Tpebo-
BaHNi 6€30ITaCHOCTH U MO/IE/IN 3JI0YMBITILIEHHUKA. | [epcrieKTHBHBIM TaK-
JKe SBJIIeTCS M3yUueHne MeToJI0B JieK/j1accuuKalui, T.e. TaKOro Crocoda
MOHWYKEHUST YPOBHS CEKPETHOCTH JIAHHBIX, KOTOPOE He HapyIiaeT Tpedo-
BaHus Oe3onacHoCcTH. MOXKHO TakzKe MpeJijiaraTh JOTMYeCKNe CUCTEMbI,
KOTOPBIE WJIeHTHMUINPYIOT HAPYIIEHNE OHOTO U3 KJIACCOB CBONCTB O€3-
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OIIACHOCTH, HAIIPUMED, IeJIOCTHOCTU WM KOH(PUIEHIINAIBHOCTH.
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