Состояние тиреоидной системы после искусственного осеменения коров с разной репродуктивной способностью

Научный руководитель – Лебедева Ирина Юрьевна

Коновалова Ольга Викторовна

Acпирант

Всероссийский научно-исследовательский институт животноводства имени академика Л.К. Эрнста, Лаборатория биологических проблем репродукции животных, поселок Дубровицы, Россия

E-mail: 68ovk@mail.ru

Гормоны щитовидной железы играют значительную роль в регуляции фертильности самок, развития зародышей, тканевой дифференцировки и роста плода. Исследования in vitro показали положительное влияние тиреоидных гормонов на жизнеспособность эмбрионов коров, что подтверждает их важность для эмбрионального развития у крупного рогатого скота [1]. Фетальная продукция тиреоидных гормонов начинается со второго триместра беременности, поэтому в более ранний период чрезвычайно важна трансплацентарная доставка этих гормонов, вырабатываемых организмом матери [2]. В представленной работе было изучено состояние тиреоидной системы коров (Bos taurus taurus) в 5-недельный период после искусственного осеменения в зависимости от его результативности. В исследованиях были использованы 30 коров черно-пестрой породы без послеродовых гинекологических заболеваний, восстановивших овариальный цикл. Синхронизацию половой охоты выполняли по схеме ovsynch. В день осеменения и на 7-й, 14-й, 21-й и 33-й день после осеменения у коров брали кровь для анализа гормонов. На 33-й день проводили УЗИобследование животных на наличие беременности, которое подтверждалось содержанием прогестерона в крови с 7-го по 33-й день после осеменения. Концентрацию прогестерона и тиреоидных гормонов в сыворотке крови измеряли методом ИФА. По результатам обследования у 18 коров была диагностирована беременность (группа 1) и у 12 особей был получен отрицательный результат (группа 2). В день осеменения у животных обеих групп содержание тироксина (Т4) и трийодтиронина (Т3) в крови не имело достоверных различий, что свидетельствовало о сходном состоянии тиреоидной системы. У коров группы 1 концентрация Т4 и Т3 не изменялась в течение всего периода исследований. В группе 2 содержание Т4 в крови коров возрастало между 21-м и 33-м днем после осеменения с 39.8 ± 3.2 до 81.6 ± 11.1 нмоль/л (p<0.001). Кроме того, на 14-й день это содержание у животных группы 2 было в 1,7 раза ниже, чем у животных группы 1 (p<0,05). У коров группы 2 концентрация Т3 в крови достигала максимального значения на 7-й день $(1,64\pm0,25 \text{ нмоль/л})$ и затем снижалась к 14-му дню (до $0,93\pm0,06 \text{ нмоль/л}$, p<0,01). При этом на 7-й день концентрация Т3 была в 1,5 раза выше в группе 2, чем в группе 1 (p<0,05). Таким образом, после плодотворного осеменения содержание в крови тиреоидных гормонов было постоянным в течение первого месяца беременности. В то же время у животных, оставшихся бесплодными, это содержание значительно варьировало после осеменения, что указывает на его возможную связь с половым циклом. Работа выполнена по государственному заданию (рег. ЦИТиС № АААА-А18-118021990006-9).

Источники и литература

1) 1. Ashkar F.A., Semple E., Schmidt C.H. et al. Thyroid hormone supplementation improves bovine embryo development in vitro // Hum. Reprod. 2010. V. 25. P. 334-344.

2) 2. Owens J.A. Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors // Reprod. Fertil. Dev. 1991. V. 3. P. 501-517

Иллюстрации

Таблица 1. Концентрация тироксина (Т4) в крови коров в различные

периоды после осеменения с разной результативностью

Период времени	Концентрация Т4 в сыворотке крови, нмоль/л	
	I	II
	Коровы, стельные на	Коровы, не стельные на
	33 день (n = 18)	33 день (n = 12)
День осеменения	$46,1\pm7,\!6$	$41,1 \pm 5,9^{a}$
7 дней после осеменения	50.7 ± 5.6	59,0 ± 8,5
14 дней после осеменения	$53,5\pm11,1$	30,7 ± 1,3 ^a *
21 день после осеменения	44.3 ± 4.2	$39,8 \pm 3,2^{a}$
33 дня после осеменения	$62,2\pm7,5$	$81,6 \pm 11,1^{\mathrm{b}}$

Достоверные различия между временными периодами: a,b P < 0.001.

Достоверные различия между I и II группой: *P < 0.05.

Рис. 1. Таблица 1. Концентрация тироксина (T4) в крови коров в различные периоды после осеменения с разной результативностью

Таблица 2. Концентрация трийодтиронина (Т3) в крови коров в

различные периоды после осеменения с разной результативностью

Период времени	Концентрация Т3 в сыворотке крови, нмоль/л	
	I	II
	Коровы, стельные на	Коровы, не стельные на
	33 день (n = 18)	33 день (n = 12)
День осеменения	$1,\!24\pm0,\!14$	$1{,}41\pm0{,}14$
7 дней после осеменения	$1,11\pm0,07$	$1,64 \pm 0,25^{a}$ *
14 дней после осеменения	$1,\!00\pm0,\!14$	0.93 ± 0.06^{b}
21 день после осеменения	$1,\!02\pm0,\!10$	$1,04 \pm 0,07^{\mathrm{b}}$
33 дня после осеменения	$0,\!96\pm0,\!09$	$0,97 \pm 0,08^{b}$

Достоверные различия между временными периодами: ${}^{a,b}P < 0.01$.

Достоверные различия между I и II группой: *P < 0.05.

Рис. 2. Таблица 2. Концентрация трийодтиронина (Т3) в крови коров в различные периоды после осеменения с разной результативностью

Таблица 3. Соотношение тироксина и трийодтиронина (Т4/Т3) в крови коров в различные периоды после осеменения с разной результативностью

Период времени	Отношение Т4/Т3	
	I	II
	Коровы, стельные на	Коровы, не стельные на
	33 день (n = 18)	33 день (n = 12)
День осеменения	$44,1\pm7,3$	$32,4 \pm 4,6^{a}$
7 дней после осеменения	$47,\!6\pm5,\!8$	68,6 ± 31,1
14 дней после осеменения	$55,1\pm7,9$	$34,2 \pm 1,9^{a}$
21 день после осеменения	$46,3\pm3,8$	$39,2\pm2,8^a$
33 дня после осеменения	73.5 ± 9.6	$86,4 \pm 11,2^{b}$

Достоверные различия между временными периодами: a,b P < 0.05.

Рис. 3. Таблица 3. Соотношение тироксина и трийодтиронина (T4/T3) в крови коров в различные периоды после осеменения с разной результативностью

Таблица 4. Концентрация тироксина (Т4) в крови коров в различные периоды после осеменения с разным исходом стельности

Период времени	Концентрация Т4 в сыворотке крови, нмоль/л	
	I Отел (n = 14)	II Аборт после 33 дня (n = 4)
День осеменения	$47,\!6\pm9,\!6$	$41,2\pm10,1$
7 дней после осеменения	44.3 ± 4.9	$71,\!6\pm14,\!2$
14 дней после осеменения	$60,1\pm14,1$	$32,1\pm1,8$
21 день после осеменения	$45,2\pm4,7$	40.8 ± 10.8
33 дня после осеменения	$57,9 \pm 8,1$	77,3 ± 18,7

Рис. 4. Таблица 4. Концентрация тироксина (T4) в крови коров в различные периоды после осеменения с разным исходом стельности

Таблица 5. Концентрация трийодтиронина (Т3) в крови коров в

различные периоды после осеменения с разным исходом стельности

Период времени	Концентрация ТЗ в сыворотке крови, нмоль/л	
	I Отел (n = 14)	II Аборт после 33 дня (n = 4)
День осеменения	$1,\!23\pm0,\!19$	$1,\!28 \pm 0,\!08^a$
7 дней после осеменения	$1,\!06\pm0,\!09$	$1,27 \pm 0,11^{a}$
14 дней после осеменения	$1,\!04\pm0,\!19$	0.87 ± 0.05^{b}
21 день после осеменения	$1,\!05\pm0,\!12$	0.94 ± 0.11
33 дня после осеменения	$1,\!01\pm0,\!12$	0.81 ± 0.08^{b}

Достоверные различия между временными периодами: a,b P < 0,01.

Рис. 5. Таблица 5. Концентрация трийодтиронина (Т3) в крови коров в различные периоды после осеменения с разным исходом стельности

Таблица 6. Соотношение тироксина и трийодтиронина (Т4/Т3) в крови коров в различные периолы после осеменения с разным исхолом стельности

Период времени	Отношение Т4/Т3	
	I Отел (n = 14)	II Аборт после 33 дня (n = 4)
День осеменения	$47,\!4\pm9,\!0$	$33,3\pm9,8$
7 дней после осеменения	$43,4 \pm 4,8$	$61,2 \pm 19,3$
14 дней после осеменения	$60,6 \pm 9,9$	$37,3 \pm 2,3$
21 день после осеменения	47.7 ± 4.6	$41,5 \pm 6,2$
33 дня после осеменения	65,1 ± 8,7	102,9 ± 28,7*

Достоверные различия между I и II группой: *P < 0.05.

Рис. 6. Таблица 6. Соотношение тироксина и трийодтиронина (T4/T3) в крови коров в различные периоды после осеменения с разным исходом стельности