Секция «Дифференциальные уравнения, динамические системы и оптимальное управление»

О локальных классах Бэра ляпуновских инвариантов

Научный руководитель – Быков Владимир Владиславович

Равчеев Андрей Валерьевич

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра дифференциальных уравнений, Москва, Россия

E-mail: rav4eev@mail.ru

Для заданного $n \in \mathbb{N}$ обозначим через \mathcal{M}^n множество линейных систем

$$\dot{x} = A(t)x, \ x \in \mathbb{R}^n, \ t \in \mathbb{R}^+ \equiv [0, +\infty),$$

с непрерывными ограниченными оператор-функциями A (отождествляемыми с соответствующими системами).

В теории показателей Ляпунова на множестве \mathcal{M}^n чаще всего рассматриваются две топологии — равномерная, задаваемая нормой $\|A\| = \sup_{t \in \mathbb{R}_+} |A(t)|, \ A \in \mathcal{M}^n$, и компактнооткрытая, задаваемая метрикой

$$\rho_C(A, B) = \sup_{t \in \mathbb{R}_+} \min\{|A(t) - B(t)|, 2^{-t}\}, \quad A, B \in \mathcal{M}^n,$$

где
$$|A(t)| = \sup_{|x|=1} |A(t)x|, \quad |x| = \sqrt{x_1^2 + \ldots + x_n^2}.$$

Полученные топологические пространства будем обозначать через \mathcal{M}_U^n и \mathcal{M}_C^n соответственно.

Пусть X — метрическое пространство. Будем говорить [1], что функция $\varphi: X \to \mathbb{R}$ принадлежит k-му ($k \in \mathbb{N} \sqcup \{0\}$) классу Бэра *относительно точки* $x_0 \in X$, если существует такая окрестность U точки x_0 , что сужение $\varphi: U \to \mathbb{R}$ функции φ на U принадлежит k-му классу Бэра [2, §39.2].

Функционал на \mathcal{M}^n , принимающий одинаковые значения на любых *ляпуновски эквивалентных* системах [3, с. 63], будем называть *ляпуновским инвариантом*.

Известно [1], что каждый из показателей Ляпунова в пространстве \mathcal{M}_C^n относительно любой точки принадлежит в точности второму классу Бэра. В то же время в пространстве \mathcal{M}_U^n найдутся точки, относительно которых все показатели Ляпунова принадлежат нулевому классу, а для каждого отдельного показателя найдутся точки, относительно которых он принадлежит в точности второму классу. Кроме того, два младших показателя не могут принадлежать в точности первому классу относительно какой-либо точки (про остальные показатели это неизвестно).

Возникает естественный вопрос: какие классы Бэра может иметь в этих пространствах относительно различных точек произвольный ляпуновский инвариант? Ответ содержится в следующих утверждениях.

Теорема 1. Для каждого $n \in \mathbb{N}$ существует множество систем $\{A_i \in \mathcal{M}^n : i \in \mathbb{N}\}$ и ляпуновский инвариант $\varphi : \mathcal{M}_U^n \to [0,1]$, имеющий относительно точки A_i в точности i-й класс Бэра.

Теорема 2. Для любых $n \in \mathbb{N}$ и $N \geq 2$ существует множество систем $\{A_i \in \mathcal{M}^n : i = \overline{1, N}\}$ и ляпуновский инвариант $\varphi : \mathcal{M}_U^n \to [0, 1]$, имеющий относительно точки A_i в точности i-й класс Бэра и такой, что на пространстве \mathcal{M}_C^n функционал φ принадлежит в точности N-му классу Бэра.

Теорема 3. Пусть $\varphi : \mathcal{M}_{C}^{n} \to \mathbb{R}$ — ляпуновский инвариант в точности k-го $(k \in \mathbb{N} \sqcup \{0\})$ класса Бэра. Тогда φ имеет в точности тот же класс Бэра относительно любой точки $A \in \mathcal{M}^{n}$.

Источники и литература

- 1) Сергеев И.Н. О локальных классах Бэра показателей Ляпунова // Дифференц. уравнения. 1996. Т. 32. № 11. С. 1577.
- 2) Хаусдорф Ф. Теория множеств. М.–Л., 1937.
- 3) Адрианова Л.Я. Введение в теорию линейных систем дифференциальных уравнений. СПб., 1992.