Секция «Математическая логика, алгебра и теория чисел»

О свойствах решетки ω -веерных формаций конечных групп

Научный руководитель - Сорокина Марина Михайловна

Максаков Серафим Павлович

Acпирант

Брянский государственный университет имени академика И.Г. Петровского, Брянск, Россия

E-mail: msp222@mail.ru

Рассматриваются только конечные группы. Класс групп представляет собой такую совокупность групп, которая с каждой своей группой содержит все изоморфные ей группы. Одним из важнейших видов классов конечных групп являются формации, т.е. классы, замкнутые относительно гомоморфных образов и подпрямых произведений. Для изучения формаций широко используются методы теории решеток (см., например, [3]). Целью исследования является изучение решеточных свойств ω -веерных формаций конечных групп, введенных в рассмотрение В.А. Ведерниковым в 1999 году [2].

Используемые обозначения и определения для групп и классов групп стандартны (см. [3]). Через $\mathfrak E$ обозначается класс всех конечных групп; ω — непустое подмножество множества \mathbb{P} всех простых чисел; \mathfrak{E}_{ω} — класс всех ω -групп, т.е. таких групп G, что $\pi(G) \subseteq \omega$, где $\pi(G)$ — совокупность всех простых делителей порядка группы $G; O_{\omega}(G)$ — наибольшая нормальная ω -подгруппа группы G. Функция $f:\omega\cup\{\omega'\}\to\{$ формации групп $\}$, где $f(\omega') \neq \emptyset$, называется ωF -функцией (здесь символ ω' обозначает элемент, не принадлежащий ω); функция $\delta: \mathbb{P} \to \{$ непустые формации Фиттинга $\}$ называется $\mathbb{P}FR$ -функцией. Формация $\mathfrak{F} = (G/O_{\omega}(G) \in f(\omega')$ и $G/G_{\delta(p)} \in f(p)$ для всех $p \in \omega \cap \pi(G)$) называется ω веерной формацией с направлением δ (коротко, $\omega\delta$ -веерной формацией) и с ω -спутником f, обозначается $\mathfrak{F}=\omega F(f,\delta)$. Направление δ называется bp-направлением, если $\delta-b$ направление, т.е. $\delta(p)\mathfrak{N}_p = \delta(p)$ для любого $p \in \mathbb{P}$; и $\delta - p$ -направление, т.е. $\mathfrak{E}_{p'}\delta(p) = \delta(p)$ для любого $p \in \mathbb{P}$. Через δ_0 обозначается направление ω -полной формации, т.е. $\delta_0(p) = \mathfrak{E}_{p'}$ для любого $p \in \mathbb{P}$; δ_1 — направление ω -локальной формации, т.е. $\delta_1(p) = \mathfrak{E}_{p'}\mathfrak{N}_p$ для любого $p \in \mathbb{P}$; δ_3 — направление ω -центральной формации, т.е. $\delta_3(p) = \mathfrak{S}_{cp}$ для любого $p \in \mathbb{P}$ [2]. Решеткой называется частично упорядоченное множество Θ , в котором любые два элемента x и y имеют точную нижнюю грань, обозначаемую $x \wedge_{\Theta} y$, и точную верхнюю грань, обозначаемую $x \vee_{\Theta} y$ [1]. Пусть Θ — непустое множество формаций, \mathfrak{F}_1 , \mathfrak{F}_2 — Θ -формации (т.е. $\mathfrak{F}_1,\mathfrak{F}_2\in\Theta$). Точную нижнюю и точную верхнюю грани формаций \mathfrak{F}_1 и \mathfrak{F}_2 определяют соответственно следующим образом: $\mathfrak{F}_1 \wedge_{\Theta} \mathfrak{F}_2 = \mathfrak{F}_1 \cap \mathfrak{F}_2, \ \mathfrak{F}_1 \vee_{\Theta} \mathfrak{F}_2 = \Theta form(\mathfrak{F}_1 \cup \mathfrak{F}_2)$ — Θ -формация, порожденная множеством $\mathfrak{F}_1 \cup \mathfrak{F}_2$ [3]. Совокупность формаций Θ называется полной решеткой формаций, если пересечение любой совокупности Ө-формаций является Θ -формацией и существует $\mathfrak{M}\in\Theta$ такая, что $\mathfrak{F}\subseteq\mathfrak{M}$ для любой формации $\mathfrak{F}\in\Theta$ [3]. Через $\Theta_{\omega\delta}$ обозначим множество всех $\omega\delta$ -веерных формаций.

Теорема 1. Пусть $\delta - \mathbb{P}FR$ -функция, $\delta_0 \leq \delta$. Тогда множество $\Theta_{\omega\delta}$ является полной решеткой формаций.

Следуя [3], полную решетку формаций Θ назовем $\omega\delta$ -индуктивной, если для любого набора $\{\mathfrak{F}_i \mid i \in I\}$ $\omega\delta$ -веерных формаций, обладающих хотя бы одним Θ -значным ω -спутником, и для всякого набора $\{f_i \mid i \in I\}$, где f_i — внутренний Θ -значный ω -спутник формации \mathfrak{F}_i , имеет место равенство: $\vee_{\Theta_{\omega\delta_{i\in I}}}(\mathfrak{F}_i) = \omega F(\vee_{\Theta_{i\in I}}f_i,\delta)$. Через $\Theta_{\mathfrak{E}}$ обозначим совокупность всех формаций конечных групп. Отметим, что $\Theta_{\mathfrak{E}}$ является полной решеткой формаций.

Теорема 2. Пусть $\delta - bp$ -направление, удовлетворяющее условию $\delta_1 \leq \delta \leq \delta_3$. Тогда $\Theta_{\mathfrak{E}}$ является $\omega \delta$ -индуктивной решеткой.

Следуя [1], решетку формаций Θ называют модулярной, если для любых формаций $\mathfrak{F}_1, \mathfrak{F}_2, \mathfrak{F}_3 \in \Theta$ таких, что $\mathfrak{F}_2 \subseteq \mathfrak{F}_1$, справедливо:

$$\mathfrak{F}_1 \wedge_{\Theta} (\mathfrak{F}_2 \vee_{\Theta} \mathfrak{F}_3) = \mathfrak{F}_2 \vee_{\Theta} (\mathfrak{F}_1 \wedge_{\Theta} \mathfrak{F}_3) [3].$$

Теорема 3. Пусть δ — bp-направление, удовлетворяющее условию $\delta_1 \leq \delta \leq \delta_3$. Тогда $\Theta_{\omega\delta}$ является модулярной решеткой формаций.

Пусть
$$\mathfrak{F}_2/_{\Theta}\mathfrak{F}_1 = \{\mathfrak{H} \in \Theta \mid \mathfrak{F}_1 \subseteq \mathfrak{H} \subseteq \mathfrak{F}_2 \}$$
, где $\mathfrak{F}_1, \mathfrak{F}_2 \in \Theta, \mathfrak{F}_1 \subseteq \mathfrak{F}_2$.

Следствие 1. Пусть δ — bp-направление, удовлетворяющее условию $\delta_1 \leq \delta \leq \delta_3$. Тогда для любых формаций $\mathfrak{F}_1, \mathfrak{F}_2 \in \Theta_{\omega\delta}$ решетки $(\mathfrak{F}_1 \vee_{\Theta_{\omega\delta}} \mathfrak{F}_2)/_{\Theta_{\omega\delta}} \mathfrak{F}_2$ и $\mathfrak{F}_1/_{\Theta_{\omega\delta}} (\mathfrak{F}_1 \wedge_{\Theta_{\omega\delta}} \mathfrak{F}_2)$ изоморфны.

Источники и литература

- 1) Биркгоф Г. Теория решеток. Наука, Москва, 1984.
- 2) Ведерников В. А., Сорокина М. М. ω-веерные формации и классы Фиттинга конечных групп // Математические заметки. 2002. Т. 71, № 1. С. 43–60.
- 3) Скиба А. Н. Алгебра формаций. Беларуская навука, Минск, 1997.