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The Skyrme’s fruitful idea [1] to describe baryons as topological solitons was based on the identification of the baryon number B with the topological charge of the degree type [image: image2.png]B = deg(S® > §%),



 which serves as the generator of the homotopy group [image: image4.png]=Z
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. The similar idea to describe leptons as topological solitons was announced by Faddeev [2], who identified the lepton number [image: image6.png]


 with the Hopf invariant [image: image8.png]Q(n)



 , which serves as the generator of the homotopy group [image: image10.png]=Z
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. The unification of these two approaches was suggested in [3,4], baryons and leptons being considered as two possible phases of the effective 8- spinor field model, for which the special 8-spinor Brioschi identity [5] holds: 
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Our Lagrangian admits very large group of transformations of the 16-spinor field  [image: image14.png]


 Let us consider small excitations of our soliton near the vacuum: [image: image16.png]¥="9,+¢
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 as [image: image20.png]x| = o



 . Then the linearized equation for [image: image22.png]


 after the substitution  [image: image24.png]


takes the form:
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 one derives the following equations for real and imaginary parts of             
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According to equation above  our model admits two types of vacuum excitations: massive and massless ones. For massive soliton the first equation in coinciding with the well-known Klein – Gordon one, the spinor excitation [image: image36.png]


 could be interpreted as the wave function of the point-like particle representing the motion of the center of the soliton, if the mass parameter [image: image38.png]


 corresponded to the real mass [image: image40.png]


 of the particle - soliton (or inverse Compton length in natural units  [image: image42.png]h/2m
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 ). To satisfy this condition, we first introduce the interaction with the gravitational field via the extended derivative generalizing ( [image: image46.png]V.¥ = (D,—I)¥)



 ,                                                    where [image: image48.png]


 stands for spinor connection with gravity. Then we intend to generalize the Higgs potential in which the constant multiplier [image: image50.png]


  will be replaced with the special invariant:
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where [image: image54.png]


 stands for the Newton gravitational constant, [image: image56.png]


 is the sigma-model part of the Lagrangian [image: image58.png]epin



 of the form  [image: image60.png]
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 is the so-called Kretschmann invariant constructed with the help of the Riemannian curvature tensor:
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 The validity of the choice can be verified by calculating invariants [image: image66.png]


 for Schwarzschild metric at large distances [image: image68.png]r= x| - o
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The resulting Lagrangian of our 16-spinor model reads: 
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where[image: image78.png]


stands for the Maxwellian electromagnetic part and [image: image80.png]


is gravitational Lagrangian  where:
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where [image: image90.png]


 stands for the vector-potential of the electromagnetic field, [image: image92.png]


 being the scalar curvature. It is worth-while to stress that the gravitational field plays an important role in our model, since the wave-particle duality principle of quantum mechanics has the gravitational origin. As for the vacuum excitation  , one can prove [6, 7] that it plays the role of the wave function[image: image94.png]
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 the special stochastic representation of quantum mechanics. 
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