Секция «Клеточная биология и гистология»

Исследование развития резистентности клеточных моделей к паклитакселу

Пожарский $A.A.^1$, $Kun\partial m \ \mathcal{A}.H.^2$

1 - Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, Россия, *E-mail: a.a.pozharskiy@gmail.com*; 2 - Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, Россия, *E-mail: Persondasha@mail.ru*

Актуальной проблемой онкологии является проблема химиорезистентности опухолевых клеток, так как существующие в клетке механизмы защиты способны адаптироваться к большинству используемых в медицинской практике препаратов. Исследования механизмов возникновения устойчивости клеток в ответ на воздействие лекарственным препаратом способствуют более полному пониманию особенностей функционирования опухолевой клетки и созданию эффективных схем лечения.

Паклитаксел - химиотерапевтическое средство, используемое в медицинской практике для лечения рака молочной железы, рака яичников и немелкоклеточного рака легкого. Препарат воздействует на микротрубочки, препятствуя делению клетки и способствуя апоптозу. Паклитаксел является субстратом Р-гликопротеина, участвующего в приобретении лекарственной устойчивости опухолевой клеткой.

С целью изучения резистентности к паклитакселу были использованы клеточные линии немелкоклеточного рака легкого человека H1299 и колоректальной карциномы человека HCT116. Клетки культивировали в среде DMEM (10% FBS) с добавлением паклитаксела при ступенчатом изменении концентрации по мере возникновения устойчивости: 0,01 мкМ, 0,03 мкМ, 0,06 мкМ, 0,12 мкМ и 0,24 мкМ. Для оценки адаптации клеток исследовали темп прироста клеток. Для этого клетки снимали с чашек используя 0,5 мл раствора трипсина и переносили в пробирку с новой средой, оценивали число клеток в полученной суспензии с использованием камеры Горяева. Суспензию объемом 2 мл, содержащую 850 000 клеток, высеивали на чистую чашку. Затем через 48 часов культивирования (37°С; 5% CO₂) клетки трипсинизировали и подсчитывали количество клеток. Клетки считались достигшими резистентности, если в заданных условиях темп их прироста был аналогичен вычисленному ранее приросту контрольной культуры дикого типа.

В ходе исследования было отмечено постепенное замедление скорости адаптации, что необходимо учитывать при планировании экспериментов: время восстановления нормальной скорости роста увеличивалось по мере повышения концентрации препарата. Клетки Н1299 показали низкие темпы приспособления к препарату, вплоть до месяцев, в то же время НСТ116 адаптируются даже к повышенным концентрациям паклитаксела относительно быстро, что может быть обусловлено различиями в функционировании защитных механизмов клеток разного происхождения, которые предстоит установить в ходе дальнейшей работы.

Иллюстрации

Концентрация	Продолжительность адаптации, дни	
паклитаксела (μΜ)	H1299	HCT 116
0.01	20	32
0.03	30	35
0.06	156	43
0.12	275	57
0.24	> более 125	52

Рис. : продолжительность адаптации клеточных моделей к паклитакселу