Секция «Кристаллография и кристаллохимия»

Свойства смешения редкоземельных галлатов, ферритов и алюминатов со структурой граната

Научный руководитель – Еремин Николай Николаевич

Товстопят София Владимировна

Студент (бакалавр)

Московский государственный университет имени М.В.Ломоносова, Геологический факультет, Кафедра кристаллографии и кристаллохимии, Москва, Россия E-mail: tovstopyat.sofiya@mail.ru

Редкоземельные алюминаты, галлаты и ферриты со структурой граната представляют большой интерес для науки и техники. Данные соединения обладают уникальными физическими свойствами, что позволяет их использовать в качестве лазеров и светодиодов, помимо этого они являются перспективными кристаллическими матрицами для захоронения высокоактивных радиоактивных отходов.

Общая формула таких гранатов $A_3B_5O_{12}$, где A — редкоземельные элементы в позиции додекаэдра (24c), B — Al, Ga, Fe, которые занимают тетраэдрическую (16a) и октаэдрическую (24d) позиции, анион O^{2-} расположен в общей позиции 96h. Структура состоит из чередующихся тетраэдров BO_4 и октаэдров BO_6 , соединяющихся по вершинам и образующих трехмерный каркас. Полости, заключенные в этом каркасе, имеют форму додекаэдров, в центре которых располагается катион A^{3+} .

В ходе изучения литературы было установлено, что информация о большинстве возможных бинарных твердых растворов редкоземельных алюминатов, галлатов и феррритов со структурой граната отсутствует. Так например, нет ни одной экспериментальной записи о существовании гранатов со следующим составом $(Nd,Gd)_3Ga_5O_{12}$. Целью данной работы стало вычисление термодинамических и структурных характеристик твердых растворов редкоземельных алюминатов, галлатов и ферритов со структурой граната, а также получение керамики состава $(Nd,Gd)_3Ga_5O_{12}$.

Методом атомистического моделирования с использованием согласованного набора межатомных потенциалов в программе GULP [1] были получены термодинамические параметры, коэффициенты асимметрии и энтальпии смешения для алюминатной, галлатной и ферритоной систем редкоземельных гранатов, а также дополнительно было выведено уравнение множественной линейной регрессии для расчета параметра элементарной ячейки. Для гранатов с составом $(Nd,Gd)_3Ga_5O_{12}$ была получена зависимость состава от температуры и была синтезирована эквимолярная керамика. Керамика получалась твердофазным спеканием Nd_2O_3 , Gd_2O_3 и Ga_2O_3 . Реактивы измельчали в течение двух часов, прессовали в таблетки и спекали в течение 5 часов при температуре 1400° С. После получения образцы исследовались методами порошковой дифракции и сканирующей электронной микроскопии.

Источники и литература

1) Gale J. D., Rohl A. L. The general utility lattice program (GULP) //Molecular Simulation. - 2003. - T. 29. - No. 5. - S. 291-341.