Построение стола-книжки, реализующего упорядоченную биллиардную игру, и его изоэнергетическая поверхность

Тунияни Доминика Арамовна

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра дифференциальной геометрии и приложений, Москва, Россия

E-mail: 2001dat@inbox.ru

В. Драговичем и М. Раднович были введены в работе [1] упорядоченные биллиардные игры, задающиеся упорядоченным набором из n софокусных эллипсов E_j и сигнатурой - n числами $i_j \in \{\pm 1\}$. Шар двигается по ломаной . . . , $A_{i-1}, A_i, A_{i+1}, \ldots$, вершины которой A_k , лежат на эллипсах $A_k \in E_s$, если $s \equiv k \bmod n$, $k \in Z$. Отражение в вершине A_k является внешним при $i_s = -1$ и внутренним при $i_s = 1$. Такие системы реализуются [2] биллиардными книжками, введенными В.В.Ведюшкиной в [3]. Тогда траектория произвольной игры является проекцией траектории со стола-комплекса следующего вида на плоскость.

Теорема 1. Упорядоченная биллиардная игра с корректно определенной траекторией, эллипсами (E_1, \ldots, E_n) и сигнатурой (i_1, \ldots, i_n) , где $E_i \neq E_{i+1}$ (считаем $E_0 = E_n, E_{n+1} = E_1$), реализуется биллиардной книжкой, склеенной из следующих листов:

- (A) кольца A_k для $\forall k \in \{0, ..., n-1\}$, ограниченные эллипсами E_k и E_{k+1} ;
- (D1) диски D_k с границами E_k для $\forall k \in \{1,...,n\}$, причем $i_k = 1$ и ровно один из эллипсов E_{k-1} или E_{k+1} находится внутри E_k ;
- (D2) диски D_k' и D_k'' с границами E_k для $\forall k \in \{1,...,n\}$, причем $i_k = 1$ и E_k находится внутри эллипсов E_{k-1} и E_{k+1} .

Перестановки, склеивающие листы книжки, равны при этом: а) $\sigma_k = (A_{k-1}D_kA_k)$ для $\forall k \in \{1,...,n\}$, удовлетворяющего условию (D1); б) $\sigma_k = (A_{k-1}D_k'D_k''A_k)$ для $\forall k \in \{1,...,n\}$, удовлетворяющего условию (D2); в) $\sigma_k = (A_{k-1}A_k)$ иначе.

Цель состоит в изучении класса изоэнергетических поверхностей Q^3 для книжек, получаемых при помощи описанного алгоритма, и для этого книжку можно упростить, не изменяя класс гомеоморфности Q^3 : заменить эллиптические листы стола на круговые и стянуть некоторые листы-кольца книжки в окружности.

Утверждение 1. Гомотопия книжки, при которой ровно одно кольцо A_k стягивается в окружность, а остальные кольца и диски остаются гомеоморфны начальным, не меняет класс гомеоморфности Q^3 , и две перестановки, стоявшие на границах кольца, склеются в одну: $\sigma_1 = (A_k L_{i_1} \dots L_{i_n})$ и $\sigma_2 = (L_{j_m} \dots L_{j_1} A_k)$ превратятся в $\sigma = (L_{j_m} \dots L_{j_1} L_{i_1} \dots L_{i_n})$.

Были изучены классы гомеоморфности Q^3 для некоторых примеров книжек, полученных по описанной выше процедуре из книжек, построенных по алгоритму их [1].

Утверждение 2. Изоэнергетические поверхности двух книжек, состоящих из k одинаковых колец или k дисков, с перестановками $\sigma = (12...k)$ на всех граничных кривых, гомеоморфны $S^1 \times (\#_{i=1}^k T_i^2)$ или линзовому пространству L(k,1), соответственно.

Источники и литература

- 1) V. Dragovic, M. Radnovic // J. Phys. A.-2004.- Vol. 37 N. 4 pp. 1269-1276
- 2) V. Dragovic, M. Radnovic, S. Gasiorek // Reg. Chaot. Dyn.-2022. Vol. 27 N. 2 pp. 132-150
- 3) V.V. Vedyushkina, I.S. Kharcheva // Sb. Math.-2021 Vol. 212 pp. 1122–1179