Секция «Математическая логика, алгебра и теория чисел»

On the chromatic number of slices without monochromatic unit arithmetic progression

Научный руководитель - Канель-Белов Алексей Яковлевич

Кирова Валерия Орлановна

Postgraduate

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра математической логики и теории алгоритмов, Москва, Россия

E-mail: emily.bla@yandex.ru

Given a normed space \mathbb{R}^n_N and a subset $\mathcal{M} \subset \mathbb{R}^n$, the *chromatic number* $\chi(\mathbb{R}^n_N, \mathcal{M})$ is the smallest r such that there exists an r-coloring of \mathbb{R}^n with no monochromatic N-isometric copy of \mathcal{M} . In these terms, $\chi(\mathbb{R}^n_N) = \chi(\mathbb{R}^n_N, I)$, where I is a two-point set.

This notion was most extensively studied especially for the Euclidean spaces \mathbb{R}_2^n . The best asymptotic lower and upper bounds for the growing dimension case belong to Raigorodskii [7] and Larman and Rogers $[5, 6]: (1.239 + o(1))^n \leq \chi(\mathbb{R}_2^n) \leq (3 + o(1))^n$ as $n \to \infty$. The general result for spaces with arbitrary norm is upper bound on this quantity depending only on the dimension: $\chi(\mathbb{R}_N^n) \leq (4 + o(1))^n$ as $n \to \infty$. This result was established by Kupavskii[3].

Consider a sequence of positive reals $\lambda_1, \ldots, \lambda_k$, given in [4]. We call a set $\{0, \lambda_1, \lambda_1 + \lambda_2, \ldots, \sum_{t=1}^k \lambda_t\} \subset \mathbb{R}$ a baton and denote it by $\mathcal{B}(\lambda_1, \ldots, \lambda_k)$. In case $\lambda_1 = \cdots = \lambda_k = 1$, i.e., if the set is just a unit arithmetic progression, we simply denote it by \mathcal{B}_k for a shorthand. We consider only collinear N-isometric copies of \mathcal{B} . When $\mathcal{B} = \mathcal{B}_k$, we call its collinear N-isometric copies unit arithmetic progressions in \mathbb{R}^n_N of length k+1. In [2] was proved that for any normed space \mathbb{R}^n_N , there is $k = k(\mathbb{R}^n_N)$ such that $\chi(\mathbb{R}^n_N, \mathcal{B}_k) = 2$.

For positive numbers $h, n \ge 1$ and e > 0, we call a set $\mathbb{R}^n_N \times [0, e]^h$ a slice and denote it by Slice(n,k,e) [1]. Chromatic number of Slice(n,k,e) is finite. Obviously, for any positive e, the inequalities are satisfied

$$\chi(\mathbb{R}^n_N) \le \chi(Slice(n, h, e)) \le \chi(\mathbb{R}^{n+h}_N).$$

Proposition. For any $h, n \ge 1$ and e > 0, there is k = k(Slice(n, h, e)) such that

$$\chi(Slice(n, h, e), \mathcal{B}_k) = 2.$$

Список литературы

- [1] Kanel-Belov A., Voronov V., Cherkashin D.. *О хроматическом числе плоскости* Algebra and Analysis 29, No. 5 (2017), 68–89.
- [2] V. Kirova, A. Sagdeev, Two-colorings of normed spaces without long monochromatic unit arithmetic progressions, arXiv:2203.04555, to appear in SIAM Journal on Discrete Mathematics.
- [3] A. Kupavskiy, On the chromatic number of \mathbb{R}^n with an arbitrary norm, Discrete Math., 311 (2011), N6, 437–440.
- [4] A. Kupavskii, A. Sagdeev, All finite sets are Ramsey in the maximum norm, Forum Math. Sigma, 9 (2021), e55, 12 pp.
- [5] D. G. Larman, A. C. Rogers. The realization of distances within sets in Euclidean space. Mathematika 19, No. 01 (1972), 1–24.

- [6] R. Prosanov, A new proof of the Larman–Rogers upper bound for the chromatic number of the Euclidean space, Discrete Appl. Math., 276 (2020), 115–120.
- [7] A.M Raigorodskii, On the Chromatic Number of a Space, Russian Math. Surveys, 55 (2000), 351–352.