Секция «Дискретная математика и математическая кибернетика»

О биективно ключевых предикатах трехзначной логики

Жариков Алексей Евгеньевич

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра математической теории интеллектуальных систем, Москва, Россия $E\text{-}mail:\ leha.zharikov.01@bk.ru$

Предикатом k-значной логики называется отображение $\rho: E_k^n \to E_2$. Скажем, что вектор-функция $\Psi = (\Psi_1, ..., \Psi_n)$ сохраняет ρ , если для всякого $\beta \in \rho$ верно $\Psi(\beta) \in \rho$. Набор $\alpha \notin \rho$ называется ключевым для ρ , если для всякого $\beta \notin \rho$ существует сохраняющая предикат вектор-функция Ψ такая, что $\Psi(\beta) = \alpha$. Предикат, имеющий ключевой набор называется ключевым. В работе [1] было дано полное описание ключевых предикатов двузначной логики. Как оказалось, они обладают двумя дополнительными свойствами:

- 1) Каждый набор не из предиката является ключевым.
- 2) Произвольный ключевой набор может быть отображен в любой другой ключевой набор с помощью биективной вектор-функции Ψ .

В связи с этим для $k \geq 3$ вводятся понятия абсолютно ключевых и биективно ключевых предикатов, которые будут обладать соответственно свойсвами 1 и 2. Уже в случае k=3 описание ключевых предикатов является гораздо более трудной задачей, что подтверждается примерами из той же работы [1]. Поэтому прежде предлагается остановиться на более симметричном подклассе биективно ключевых предикатов трёхзначной логики и дать его полное описание.

Предикат арности r называется псевдодвузначным ключевым, если он принимает значение 1, когда хотя бы один из аргументов равен 2, и является ключевым предикатом двузначной логики на множестве $\{0,1\}^r$.

Теорема. Предикат $\rho(x_1,...,x_n) \not\equiv 0$ трехначной логики является биективно ключевым тогда и только тогда, когда для некоторого множества линейных функций $\mathbf{L} = \{L_1,...,L_r\}$ со сложением по модулю 3 он представим в виде

$$\nu(L_1,...,L_r) \vee \mu_1(\mathbf{L}_1) \vee ... \vee \mu_s(\mathbf{L}_s),$$

где $\nu, \mu_1, ..., \mu_s$ – псевдодвузначные ключевые предикаты, причем μ_i имеют лишь 2 нуля, а $\mathbf{L} = \bigsqcup_{i=1}^s \mathbf{L}_i$ – разбиение множества \mathbf{L} на независимые подмножества линейных функций.

Источники и литература

1) Zhuk D.N. Key (critical) relations preserved by a weak near-unanimity function // Algebra Universalis 77, 191-235 (2017)