Секция «Вычислительная математика, математическое моделирование и численные методы»

Сравнительное исследование реализаций двух математических моделей вязкоупругой жидкости

Научный руководитель – Апушкинская Дарья Евгеньевна

Иванова Е.К.¹, Емельянов А.В.²

1 - Российский университет дружбы народов, Факультет физико-математических и естественных наук, Москва, Россия, *E-mail: katya.l888l@gmail.com*; 2 - Российский университет дружбы народов, Факультет физико-математических и естественных наук, Москва, Россия, *E-mail: profanton97@gmail.com*

Целью данной работы является моделирование процесса течения вязкоупругой жидкости с помощью двух различных математических моделей – Олдройда [1] и РТТ (Phan Thien Tanner) [2] – и двух численных пакетов – OpenFoam [3] и Comsol Multiphysics [4], которые базируются на методе конечных объёмов [5] и методе конечных элементов [6], соответственно. Данная задача возникла из необходимости расчёта изменения поперечного размера полимера в процессе экструзии, а именно – после прохождения им формующей щели под большим давлением и перехода в область атмосферного давления. Обе модели дают одинаковый результат, полимер принимает различные формы при выходе из экструдера в зависимости от граничных условий, а также при моделировании в различных численных пакетах. В математических моделях вязкоупругой жидкости уравнения сохранения массы и импульса несжимаемой жидкости дополняются соотношениями, связывающими тензор скоростей деформаций D с тензором дополнительных напряжений Т. Вязкоупругие жидкости можно рассматривать как жидкости, состоящие как из вязких элементов, так и из упругих элементов, потому для их представления мы пользовались моделями Олдройда и РТТ, которые учитывают следующие параметры вязкоупругой жидкости: η_p - вязкость полимера, η_s - вязкость растворителя, λ - время релаксации. Модель Олдройда учитывает сложную структуру полимерных жидкостей путём введения следующих переменных: Тр - полимерное напряжение, Ts - напряжение растворителя. Тензор дополнительных напряжений в модели Олдройда имеет вид:

$$T = Ts + Tp \tag{1}$$

$$Ts = 2\eta_s D \tag{2}$$

$$Tp + \lambda (\frac{\partial Tp}{\partial t} + \dot{T}p) = 2\eta_p D \tag{3}$$

где $\dot{T}p = (V \cdot \nabla)T - (\nabla V)T - T(\nabla V)T$, $D = \frac{1}{2}(\nabla V + (\nabla V)T)$ – тензор скоростей деформаций. В РТТ модели для тензора дополнительных напряжений также используются соотношения (1) и (2), а полимерное напряжение представлено дифференциальным уравнением:

$$f(trTp)Tp + \lambda(\frac{\partial Tp}{\partial t} + \dot{T}p + \xi(TpD + DTp) = 2\eta_p D$$
(4)

Функция f(trTp) имеет три представления: линейное, квадратичное и экспоненциальное. Нас интересует последнее, которое записывается как:

$$f(trTp) = exp(\frac{\kappa\lambda}{\eta_p}trTp)$$
(5)

 κ, ξ - безразмерные параметры модели, которые могут быть вычислены опытным путём. Заметим, что при $\kappa = 0$ и $\xi = 0$ РТТ модель превращается в модель Олдройда. Для решения системы дифференциальных уравнений используют различные численные методы. В методе конечных элементов (Finite Element Method) искомая функция представляется в виде линейной комбинацией базисных функций: $\phi(x) = \sum \phi_i \psi_i(x)$. Расчётная область разбивается на подобласти, далее находятся значения искомой функции во всех узловых точках. Базисные функции ψ_i являются кусочно-непрерывными функциями с финитным носителем и имеют стандартный вид. Например, в случае базисных функций первого порядка они задаются следующим образом:

$$\psi_{i} = \begin{cases} 0, & x < x_{i-1} \\ \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, & x_{i-1} < x < x_{i} \\ \frac{x_{i+1} - x_{i}}{x_{i+1} - x_{i}}, & x_{i} < x < x_{i+1} \\ 0, & x > x_{i+1}. \end{cases}$$
(6)

Далее дифференциальное уравнение умножается на тестовую функцию и интегрируется по каждому элементу, то есть уравнение записывается в слабой форме. Получается система уравнений относительно значений искомой функции в узлах расчётной области. После объединения уравнений для всех элементов в единую систему получается система алгебраических уравнений вида: $A\phi_i = b$. Метод конечных объёмов (Finite Volume Method) имеет более понятную физическую интерпретацию. Он заключается в том, чтобы разбить расчётную область на контрольные объёмы (KO) и записать интегральное уравнение для каждой такой подобласти. Система уравнений для значений искомой функции в центрах KO выглядит следующим образом:

$$\int_{\Omega_p} \frac{\phi}{t} \, dV \, + \oint_{\partial\Omega_p} \Gamma_{\phi} \, dS \, = \int_{\Omega_p} f \, dV \tag{7}$$

$$\frac{\partial}{\partial t}(\phi_p V_p) + (\Gamma_e - \Gamma_w) = f_p V_p \tag{8}$$

где - центр КО, а и w - границы КО, ϕ - искомая функция, f - известная функция, $\Gamma_{\phi} = V\phi - k\nabla\phi$. После чего каждое уравнение аппроксимируется по объёму и по границам КО. Совокупность этих уравнений даёт общую систему алгебраических уравнений, решение которой даёт значение искомой функции в центре каждой подобласти.

На рисунке 1 представлены наши результаты моделирования течения полимера при выходе из формирующей щели слева направо. Длина области 30 сантиметров, высота - 10 сантиметров, верхняя граница свободная, нижняя - с проскальзываением. Полимер выходит с разными (рис. 1а) и одинаковыми (рис. 1б) средними скоростями потока на входе и выходе. Результаты полученны решением уравнений ПТТ модели с помощью метода FEM. Основной вывод: с ростом разницы скоростей деформация полимера увеличивается.

На самом деле при литье плёнок (экструзии полимеров) изменяются все границы, не только верхняя. Поэтому задача существенно трёхмерная и требует больших вычислительных ресурсов Для упрощения предлагались 2.5D подходы [7]. На рисунке 2 показаны наши результаты моделирования процесса литья плёнки с помощью модели 2.5 D – Олдройда методом конечных объёмов. Плёнка выходит из формирующей сверху, снизу - конец плёнки наматывается на валик. Результат показывает, что при различных скоростях на входе и выходе плёнка заметно сужается. Толщина плёнки (рис. 26) сужается медленнее, чем её ширина (рис. 1а).

Источники и литература

- 1) Sequeira A., Janela J. AN OVERVIEW OF SOME MATHEMATICAL MODELS OF BLOOD RHEOLOGY, Springer, 2007.
- Phan-Thien N., Tanner R. I. New constitutive equation derived from network theory J. Non-Newton Fluid Mech., 2 (1977), pp. 353-365.
- 3) https://www.openfoam.com/
- 4) https://www.comsol.ru/
- 5) Thess A., German Aerospace Center Fluid Mechanics and Its Applications Volume 113 Institute of Engineering Thermodynamics, Stuttgart, Germany 2016.
- 6) Reddy J. N. Introduction to the Finite Element Method, 4th Edition, 2018.
- 7) d'Halewyu S., Agassant J. F., Demay Y. Numerical simulation of the cast film process, Polymer Engineering Science, vol. 30, no. 6, pp. 335–340, 1990.

Иллюстрации

Рис. 1. Численное решение уравнений ПТТ модели с помощью метода FEM. Показано поперечное сечение плёнки. Нижняя граница – с проскальзыванием, верхняя – свободная. (а) Скорость на входе 0,06 м/с, на выходе 0,1 м/с. (б) Скорость на входе 0,02 м/с.

Рис. 2. Поперечное сечение плёнки. 2.5 D - Олдройд модель, FVM. Скорость на входе 0,01 м/с, на выходе - 0,4 м/с. (а)Изменение ширины плёнки по оси Оу. (б) Изменение толщины плёнки по оси Оz.