Секция «Экономика отраслей и рынков и конкурентная политика»

От каждого по возможностям, каждому по субсидиям: Оценка результативности промышленной политики и конкуренции в России

Научный руководитель – Ионкина Карина Александровна

Спектор Станислав Викторович

Cmyдент (магистр) Московский государственный университет имени М.В.Ломоносова, Экономический факультет, Москва, Россия E-mail: spektorstas@qmail.com

В России с 2014 года принят Федеральный закон о промышленной политике, определяющий основные задачи промышленной политики страны, в число которых входит стимулирование рационального и эффективного использования ресурсов субъектами деятельности в сфере промышленности. Среди основных инструментов промышленной политики стоит выделить прямую поддержку, субсидирование, льготные ставки по кредитам, налоговые каникулы. Эти показатели отражаются в данных на уровне компании, поэтому существует возможность оценить, как и при каких условиях промышленная политика влияет на поведение и эффективность деятельности фирм.

Среди подходов к оценке результативности промышленной политики стоит отдельно отметить подход, примененный в статье Industrial Policy and Competition, (Aghion et al. 2015). Основное отличие в подходе авторов от других работ, изучающих эффекты промышленной политики – анализ со стороны разработки промышленной политики и ее связи с отраслевой конкуренцией, в то время как в большинстве работ, оценивающих эффекты промышленной политики, изучаются прямые эффекты государственной поддержки, а конкуренция не учитывается. Например, Greenwald и Stiglitz (2006) рассматривают промышленную политику как эффективный инструмент защиты молодых отраслей от неравной конкуренции с зарубежными фирмами, а Krueger и Tuncer (1984) рассматривают влияние тарифов как сдерживающих конкуренцию инструментов, вследствие чего производительность в отрасли снижается. Касательно непосредственного влияния, Harris и Robinson (2004) обнаружили, что промышленная политика положительно влияет на производительность заводов, однако эффект значим для ограниченного числа отраслей и регионов Великобритании. А основной вывод авторов – программы поддержки заводов в Великобритании имели крайне малый эффект на производительность.

Адһіоп и др. отмечают, что промышленная политика влияет по-разному на отрасли с разным уровнем конкуренции. Авторы рассматривают эффекты не только самой государственной поддержки, но и распределения этой поддержки на уровне городов. Основной результат, который получают авторы — промышленная политика, направленная на относительно более конкурентные отрасли или направленная на сохранение и стимулирование конкуренции, оказывается более результативной с точки зрения производительности фирм. В частности, авторы показали, что равномерное распределение государственной поддержки увеличивает производительность. Кроме того, показано, что существует обратная U-образная зависимость между уровнем конкуренции и производительностью фирм: при низком уровне конкуренции производительность растет, а при высоком — снижается.

Аналогичное исследование можно построить для исследования результативности промышленной политики в России. Для оценки взяты данные из СПАРК Интерфакс (https://spark-interfax.ru/) по российским компаниям в сфере добычи, производства и строительства за 2019-2021 гг. В базу данных включены следующие показатели:

• Возраст компании, лет;

- ИНН;
- Основной вид деятельности по ОКВЭД;
- Среднесписочная численность работников;
- Себестоимость продаж;
- Выручка от продаж;
- Уплаченный компанией налог на добавленную стоимость;
- Основные средства компании;
- Принадлежность компании к госсектору;

Отрасли компаний были сгруппированы в несколько классов на основе ОКВЭД, основные: производство продуктов, производство электроники, производство электрических машин, производство металлических изделий, добыча, строительство, производство стройматериалов, Производство одежды и обуви, химическое производство. Также были взяты данные по государственной поддержке из Единого реестра субъектов малого и среднего предпринимательства. Данные из реестра были сопоставлены с данными из СПАРК по ИНН. В базу данных включены следующие показатели: сумма оказанной компании финансовой поддержки (объем субсидий), процент по предоставленному компании финансированию на возвратной основе (льготный кредит, лизинг), срок предоставления льготного кредита, дата погашения льготного кредита.

В итоговом наборе данных оказалось 127 019 наблюдений. Для измерения эффективности для каждой компании был рассчитан коэффициент общей факторной производительности (TFP, total factor productivity). Данный коэффициент, как описывают Aghion и др., 2015, является общим параметром эффективности фирмы. TFP оценивает инновации фирмы, ее способность снизить затраты, повысив эффективность производства товаров. На основании имеющихся данных была оценена производственная функция Кобба-Дугласа аналогично работе Белёв и др., 2021. За переменную выпуска фирмы взята добавленная стоимость, рассчитанная из уплаченного НДС $Y = AK^{\alpha}L^{\beta}$. Для оценки на данных формула переводится в логарифмический вид, $logY = logA + \alpha logL + \beta logL + X + \epsilon$. Далее производительность для каждой фирмы была оценена как остатки регрессии: $A_i = exp(logY - \hat{\alpha}logK - \hat{\beta}logL)$. Результаты оценивания можно видеть в таблице 1.

Для оценки уровня конкуренции на основе имеющихся данных для каждой отрасли был расчитан Индекс Лернера:

$$Lerner_{ijrt} = \frac{\sum_{i}^{n_{jrt}} \left(\frac{TR_{ijrt} - VC_{ijrt}}{TR_{ijrt}}\right)}{n_{jrt}} \tag{1}$$

, Где TR_{ijrt} – выручка, VC_{ijrt} – себестоимость продаж фирмы і отрасли ј в регионе r в год t, а n_{ijrt} – число фирм в отрасли ј в регионе r в год t.

Также были рассчитаны индекс Херфиндаля-Хиршмана для субсидий и льготного кредитования:

$$Herf_subsidy_{ijrt} = \sum_{i \in j} \left(\frac{Subsidy_{ijrt}}{\sum_{i \in j} (Subsidy_{ijrt})}\right)^2 \tag{2}$$

$$Herf_interest_{ijrt} = \sum_{i \in j} (\frac{Interest_{ijrt}}{\sum_{i \in j} (Interest_{ijrt})})^2$$
 (3)

В модель включаются обратные индексам Херфиндаля-Хиршмана показатели, $Comp_herf_1 - Herf_subsidy_{ijrt}$, $Comp_herf_int = 1 - Herf_interest_{ijrt}$, отражающие равномерность распределения субсидий и льготных кредитов.

Помимо этого были рассчитаны коэффициенты корреляции субсидий и уровня монополизации в секторе, выраженный через индекс Лернера:

$$corr_sub_lerner = Corr(Subsidy_{ijrt}.Lerner_{jrt})$$
 (4)

$$corr\ int\ lerner = Corr(Interest_{ijrt}.Lerner_{jrt})$$
 (5)

Данные показатели измеряют, насколько внутри региона промышленная политика ориентирована на конкурентные отрасли. Если значение показателя равно 1, поддержка выделяется не конкурентным отраслям, если значение показателя равно -1, то промышленная политика направлена на конкурентные отрасли.

Для измерения эффективности промышленной политики построена регрессия на панельных данных с 2019 по 2021 гг. логарифма производительности фирмы на характеристики сектора: равномерность распределения господдержки, корреляция монополизации и господдержки, индекс Лернера, а также на индивидуальные характеристики, index_sub и index_int, равные 1, если фирма получает субсидию и льготный кредит соответственно и 0 иначе. Также в модель включены фиксированные эффекты для отрасли и года. Как показали результаты оценивания (см. таблицу 2), промышленная политика действительно имеет эффект, так, выдача субсидии повышает при прочих равных производительность фирмы на 30,8%, а выдача льготного кредита — на 17,2%. Тем не менее, влияние равномерности выдачи субсидий и льготного кредитования не значима, а в менее конкурентных отраслях влияние отрицательное.

Кроме того, важно отметить, что выдача субсидий фирмам в более конкурентных отраслях приводит к большей эффективности, корреляция между субсидированием и индексом Лернера отрицательна и значима, коэффициент в столбце 2 равен -0,276. Если в регионе промышленная политика направлена только на абсолютно конкурентные отрасли, производительность фирм выше на 31,8%.

Источники и литература

- 1) Aghion P. et al. Industrial policy and competition //American economic journal: macroeconomics. -2015. T. 7. $N_{\rm e}$. 4. C. 1-32.
- 2) Greenwald B., Stiglitz J. E. Helping infant economies grow: Foundations of trade policies for developing countries //American Economic Review. − 2006. − T. 96. − №. 2. − C. 141-146.
- 3) Krueger A. O., Tuncer B. An Empirical Test of the Infant Industry Argument: Reply //American Economic Review. − 1984. − T. 74. − №. 5. − C. 1112-1113.
- 4) Harris R., Robinson C. Industrial policy in Great Britain and its effect on total factor productivity in manufacturing plants, 1990–1998 //Scottish Journal of Political Economy. 2004. T. 51. №. 4. C. 528-543.
- 5) Белёв С. Г., Ветеринаров В. В., Сучкова О. В. Территории опережающего развития и производительность в российских городах //Экономический журнал Высшей школы экономики. 2021. Т. 25. №. 1. С. 9-41.

Таблица 1: Результаты оценивания производительности

	Dependent variable:			
	log(value_added)			
$\overline{\log(K)}$	0.047***			
	(0.002)			
log(L)	0.912***			
3()	(0.003)			
factor(Year)2020	0.016			
, ,	(0.012)			
factor(Year)2021	0.092***			
, ,	(0.012)			
Constant	12.871***			
	(0.028)			
Observations	177,426			
Adjusted R ²	0.463			
Note:	*p<0.1; **p<0.05; ***p<0.01			

Таблица 2: Результаты оценки

	Dependent variable:							
	$\log(\mathrm{TFP})$							
	FE	RE	FE	RE	FE	RE		
	(1)	(2)	(3)	(4)	(5)	(6)		
comp_herf_sub	-0.033	0.024	-0.120***	0.022				
	(0.052)	(0.018)	(0.042)	(0.018)				
cor sub lerner	-0.491	-0.276**	-0.567^{*}	-0.278**				
	(0.343)	(0.110)	(0.342)	(0.110)				
comp herf int	-0.126**	-0.029			-0.148***	-0.028		
	(0.055)	(0.020)			(0.047)	(0.020)		
cor int lerner	-0.575^*	0.016			-0.640**	0.027		
	(0.303)	(0.115)			(0.299)	(0.115)		
lerner	-0.204	0.508***	-0.072	0.508***	-0.271	0.473***		
	(0.603)	(0.179)	(0.601)	(0.179)	(0.601)	(0.179)		
lerner2	4.264	-2.650***	4.250	-2.637^{***}	4.566*	-2.541^{***}		
	(2.665)	(0.820)	(2.664)	(0.819)	(2.658)	(0.819)		
$index_sub$	1.923***	0.269***	1.932***	0.269***	1.923***	0.270***		
	(0.073)	(0.023)	(0.073)	(0.023)	(0.073)	(0.023)		
index int	1.291***	0.159***	1.291***	0.159***	1.294***	0.159***		
_	(0.048)	(0.015)	(0.048)	(0.015)	(0.047)	(0.015)		
stateshare		1.507	0.379	1.618*	0.086	1.516*		
		(0.922)	(1.012)	(0.919)	(1.023)	(0.920)		
Constant	22.598***	19.670***	22.522***	19.656***	22.591***	19.678***		
	(0.138)	(0.108)	(0.136)	(0.108)	(0.138)	(0.108)		
Observations	64,545	127,019	64,545	127,019	64,545	127,019		
\mathbb{R}^2	0.035	0.309	0.121	0.309	0.121	0.309		
Adjusted R ²	0.035	0.309	0.120	0.309	0.121	0.309		

Note: *p<0.1; **p<0.05; ***p<0.01